数据增强

一、数据增强

当你训练一个机器学习模型时,你实际做工作的是调参,以便将特定的输入(一副图像)映像到输出(标签)。我们优化的目标是使模型的损失最小化 , 以正确的方式调节优化参数即可实现这一目标[参考][参考]。

人工智能的核心是机器学习,深度学习需要大量的数据,那么当数据有限是如何进行深度学习?

1.1 常用的增强技术

每个技术都定义了一个增强因子,用以增强数据集(也成为数据增强因子)

1、翻转

2、旋转

关于这个操作,需要注意的一个关键问题是,在旋转之后,图像维度可能不会被保留。如果是正方型图像,旋转90度之后图像的尺寸会被保存。如果图像是长方形,旋转180度之后图像尺寸也会保存。 但用更小的角度旋转图像,将会改变最终图像的尺寸。在下面的章节中我们将会看到如何解决这个问题。下面是方形图像旋转90度的例子。

3、缩放

放大时,放大后的图像尺寸会大于原始尺寸。大多数图像处理架构会按照原始尺寸对放大后的图像进行裁切。

4、裁剪

5、平移

平移是将图像沿X或Y方向(或者同时沿2个方向)移动。在下面的例子中, 我们假设在图像边界之外是黑色的背景,也同步被移动。这一数据增强方法非常有用,因为大多数对象有可能分布在图像的任何地方。这迫使你的卷积神经网络需要看到所有地方。

  1. 高斯噪声

通过添加适量的噪声能够有效提升神经网络的学习能力。

一个"弱化"的版本是椒盐噪声,它以随机的白色和黑色像素点呈现并铺满整个图片。这种方式对图像产生的作用和添加高斯噪声产生的作用是一样的,只是效果相对较弱。

  1. 颜色变换类,指通过模糊、颜色变换、擦除、填充等方式对图像进行处理

1.2 高级增强技术

  1. 条件型生成对抗网络(Conditional GANs)将夏日风光的图片转换为冬季风景的例子(风格迁移)
相关推荐
掘金一周22 分钟前
我开源了一款 Canvas “瑞士军刀”,十几种“特效与工具”开箱即用 | 掘金一周 8.14
前端·人工智能·后端
程序员半支烟31 分钟前
选择gpt-5还是claude-4-sonnect
人工智能·chatgpt·个人开发
拉一次撑死狗32 分钟前
机器学习实战·第三章 分类(2)
人工智能·机器学习·分类
没事学AI1 小时前
美团搜索推荐统一Agent之交互协议与多Agent协同
人工智能·agent·美团·多agent
霖002 小时前
FPGA的PS基础1
数据结构·人工智能·windows·git·算法·fpga开发
weixin_456904272 小时前
基于Tensorflow2.15的图像分类系统
人工智能·分类·tensorflow
在钱塘江3 小时前
LangGraph构建Ai智能体-12-高级RAG之自适应RAG
人工智能·python
聚客AI3 小时前
🚀碾压传统方案!vLLM与TGI/TensorRT-LLM性能实测对比
人工智能·llm·掘金·日新计划
m0_603888713 小时前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览
Elastic 中国社区官方博客3 小时前
超越相似名称:Elasticsearch semantic text 如何在简洁、高效、集成方面超越 OpenSearch semantic 字段
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索