在使用 ChatGPT 过程中,大家不可避免的会遇到这些问题
- 如何在国内使用ChatGPT?
- 如何搭建代理服务器?
- 如何自定义私有 GPT?
- 如何开发一个知识库?
接下来我将手摸手带大家进入 AI 世界,最终效果先给 xdm 体验一下
国内使用 ChatGPT
使用 sms-activate
- 充值
- 购买 openai 服务
- 注册 openai 账号
- 号码验证 注册流程有一个号码验证,输入上述号码,等待验证码即可
如何搭建开发代理服务器
使用 Deno Deploy,如果嫌麻烦可以使用我的代理:proxy.aitimi.cn/
- 创建项目
- 建立代理服务器
ts
import { serve } from "https://deno.land/std@0.181.0/http/server.ts";
const OPENAI_API_HOST = "api.openai.com";
serve(async (request) => {
const url = new URL(request.url);
url.host = OPENAI_API_HOST;
return await fetch(url, request);
});
- 托管
- 获取代理
另外你也可以使用 cf workers
,代码如下:
ts
export default {
async fetch(request, env) {
try {
const OPENAI_API_HOST = "api.openai.com";
const oldUrl = new URL(request.url);
if (oldUrl.pathname === "/") {
return new Response(`https://${oldUrl.hostname}/v1`, { status: 200 });
}
const newUrl = new URL(request.url);
newUrl.hostname = OPENAI_API_HOST;
const modifiedRequest = new Request(newUrl, {
method: request.method,
headers: request.headers,
body: request.body,
});
return await fetch(modifiedRequest);
} catch (e) {
return new Response(e.stack, { status: 500 });
}
},
};
如何自定义私有 GPT
为了简便,我们直接使用 OpenAI,我们使用前篇的 脚手架 工具快速创建一个 nuxt3 工程: ucli create ai
,等待安装完成,直接进入项目输入pnpm dev
启动即可。
配置代理
我们需要在 .env 中配置代理
bash
PROXY_URL = 'https://proxy.aitimi.cn/v1'
在调用时
ts
const opt: Record<string, unknown> = {
timeout: 20 * 1000,
apiKey: '',
}
if (process.env.PROXY_URL)
opt.baseURL = process.env.PROXY_URL
const openai = new OpenAI(opt)
封装 OpenAI API
在服务端,我们需要对 OpenAI API
进行封装调用:
基础 API 封装
Chat API
对话,另外 Completions API
被标记为兼容,不再推荐,可以使用 Chat API
实现
ts
export async function chat(event: H3Event, messages: IMessage[], conf: IConf) {
const {
model = 'gpt-3.5-turbo',
temperature = 1,
stream = false,
user = '',
token = '',
} = conf
openai.apiKey = token
const list = messages.map((i) => {
return {
role: i.role,
content: i.content,
}
})
const res = await openai.chat.completions.create({
messages: list as any,
model: model as string,
temperature,
stream,
user,
}).catch((error) => {
handleError(error)
})
if (stream) {
const streamResult = new PassThrough()
for await (const chunk of res as any) {
if (chunk.choices[0].finish_reason === null) {
const content = chunk.choices[0].delta.content
if (content !== undefined && content !== null)
event.node.res.write(content)
}
else {
event.node.res.end()
}
}
return sendStream(event, streamResult)
}
else {
const result = res?.choices?.[0]?.message?.content
return result
}
}
Dalle API
图像生成,图像生成后图片做了一个代理,以便客户端可以访问到生成图片
ts
function proxyImage(url?: string) {
const baseURL = 'oaidalleapiprodscus.blob.core.windows.net'
return url?.replace?.(baseURL, process.env.IMAGE_PROXT_URL)
}
export async function dalle(prompt: string, conf: IImageConf) {
const {
n = 1,
size = '256x256',
response_format = 'url',
user = '',
type = 'create',
image,
mask,
token = '',
} = conf
openai.apiKey = token
let res
switch (type) {
case 'create':
const res = await openai.images.generate({
prompt,
n,
size,
response_format,
user,
}).catch((error) => {
handleError(error)
})
return proxyImage(res?.data?.[0]?.url || res?.data?.[0]?.b64_json)
case 'edit':
res = await openai.images.edit({
image: image!,
mask,
prompt,
n,
size,
response_format,
user,
}).catch((error) => {
handleError(error)
})
break
case 'variation':
res = await openai.images.createVariation({
image: image!,
n,
size,
response_format,
user,
}).catch((error) => {
handleError(error)
})
break
}
return res
}
Embedding API
矢量化
ts
export async function embedding(input: string, conf: IEmbeddingConf) {
const {
model = 'text-embedding-ada-002',
user = '',
token = '',
} = conf
openai.apiKey = token
const res = await openai.embeddings.create({
model,
input,
user,
}).catch((error) => {
throw error
})
return res?.data?.[0]?.embedding
}
Whisper API
语音转文本
ts
export async function whisper(file: File, prompt: string, conf: IWhisperConf) {
const {
model = 'whisper-1',
response_format = 'json',
temperature = 0,
language = '',
is_translation = false,
token = '',
} = conf
openai.apiKey = token
let res = {}
if (is_translation) {
res = await openai.createTranslation({
file,
prompt,
model,
response_format,
temperature,
language,
}).catch((error) => {
handleError(error)
})
}
else {
res = await openai.audio.transcriptions.create({
file,
prompt,
model,
response_format,
temperature,
language,
}).catch((error) => {
handleError(error)
})
}
return res
}
其他
OpenAI API
还支持 内容安全检查(moderation)、模型微调(finetune),大家自行封装。
NuxtAPI 封装
Chat API
ts
import { ModelValidSchema } from '~/server/schema'
export default defineEventHandler(async (event) => {
const body = await readBody(event)
const { messages, conf } = body
validate(ModelValidSchema, { messages, ...conf })
return await chat(event, messages, conf)
})
Dalle API
ts
import { PromptValidSchema } from '~/server/schema'
export default defineEventHandler(async (event) => {
const body = await readBody(event)
const { prompt, conf } = body
validate(PromptValidSchema, { prompt, ...conf })
return await dalle(prompt, conf)
})
Embedding API
Embedding API
封装我们会在知识库详细讲解
调用
以 Chat API
为例:
- 使用 Fetch 调用
- 处理流数据
- Markdown 转 HTML
- 输出显示
获取数据
使用 Fetch API 获取接口数据,读取流信息获取生成文本,使用 store 储存 当前生成文本
ts
const { setCurrentMessage } = useSessionStore()
const result = await fetch('/api/chat', {
method: 'POST',
body: JSON.stringify({
messages: client.getMessages(true, list?.value),
conf: Object.assign(client.getConf(), { stream: true, token: getSetting()?.value?.token }),
}),
}).catch((error) => {
const item = client.addAssistant(error?.message, MessageType.error)
list?.value?.push(item)
})
if (!result?.ok) {
try {
const res = await result?.json?.()
if (res) {
const item = client.addAssistant(res?.message || res, MessageType.error)
list?.value?.push(item)
}
}
catch {
const user = client.addAssistant('服务器出错了~', MessageType.error)
list?.value?.push(user)
}
return
}
const res = result?.body
if (!res) {
const item = client.addAssistant('AI 没有数据返回', MessageType.error)
list?.value?.push(item)
return
}
const reader = res.getReader()
const decoder = new TextDecoder('utf-8')
const user = client.addAssistant('')
list?.value?.push(user)
let done = false
while (!done) {
const { value, done: readerDone } = await reader.read()
if (value) {
const char = decoder.decode(value)
if (char === '\n' && user?.content?.endsWith('\n'))
continue
if (char) {
user.content += char
setCurrentMessage(user.content)
}
}
done = readerDone
}
Markdown 转 HTML
初始化 Markdown
使用 markdown-it
来转换成 HTML
ts
import MarkdownIt from 'markdown-it'
import mdKatex from 'markdown-it-katex'
import mdHighlight from 'markdown-it-highlightjs'
const md = MarkdownIt({
linkify: true,
breaks: true,
})
.use(mdKatex)
.use(mdHighlight, {
inline: true,
})
export default md
转换 HTML
ts
import md from '~/utils/markdown'
export function renderMarkdown(content: string) {
const msg = md.render(content)
return msg
}
使用 Worker 转换 HTML
ts
import MarkdownWorker from './md.worker?worker'
export function renderMarkdownInWorker(content: string): Promise<string> {
if (!content)
return Promise.resolve('')
const id = crypto?.randomUUID?.()
markdownWorker.postMessage({ type: 'markdown', id, payload: content })
return new Promise((resolve) => {
function handler(e: MessageEvent) {
if (e.data.type === 'html-markdown' && e.data.id === id) {
markdownWorker.removeEventListener('message', handler)
resolve(e.data.payload as string)
}
}
markdownWorker.addEventListener('message', handler)
})
}
md.worker.ts
ts
import md from '~/utils/markdown'
const sw = globalThis
sw.addEventListener('message', (event) => {
if (event.data.type === 'markdown' && event.data.payload) {
const msg = md.render(event.data.payload)
sw.postMessage({
type: 'html-markdown',
payload: msg,
id: event.data.id,
})
}
})
输出显示
使用 nuxt3 plugin
注入 markdown util
ts
import { renderMarkdownInWorker } from '~/works'
import 'highlight.js/styles/atom-one-dark.css'
export default defineNuxtPlugin(() => {
return {
provide: {
renderMarkDown: renderMarkdownInWorker,
},
}
})
在 显示组件中调用 markdown util
生成 HTML
ts
import { throttle } from 'lodash-es'
const { $renderMarkDown } = useNuxtApp()
const content = ref('')
const { currentMessage } = storeToRefs(useSessionStore())
const throttleRender = throttle((msg: string) => {
$renderMarkDown(msg).then((html) => {
content.value = html
})
}, 50)
watch(currentMessage, (newVal) => {
throttleRender(newVal)
})
如何开发个人知识库
知识库开发详见 这篇文章
最后
完结撒花🎉,接下来的路,只能大家自己走了😄,希望大家在 AI 这片热土上掘金顺利!