机器学习的基本代码

步骤1:导入必要的库

```python

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

```

步骤2:准备数据

我们将使用一个示例数据集,包含两个类别(Positive和Negative),每个类别都有一些文本示例。我们将使用Pandas库来读取数据,并查看一些样本数据。

```python

#读取数据

data = pd.read_csv('data.csv')

#查看前五个文本数据

print(data.head())

```

步骤3:创建特征向量和目标变量

我们需要将文本转化为数字来训练我们的模型。使用CountVectorizer可以将文本转换为数字特征向量。我们还需要将目标变量(即分类标签)转换为数字。

```python

#使用CountVectorizer创建特征向量

vectorizer = CountVectorizer(stop_words='english')

X = vectorizer.fit_transform(data.text)

#将目标变量转换为数字

y = pd.factorize(data.label)[0]

```

步骤4:拆分数据集

我们需要将数据集拆分到训练集和测试集中,以便在训练模型时对其进行评估。我们将使用train_test_split函数来实现此功能。

```python

#将数据集拆分到训练集和测试集中

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

```

步骤5:训练模型

使用MultinomialNB可以训练我们的模型。MultinomialNB是一种常用于文本分类的朴素贝叶斯算法。

```python

#训练模型

clf = MultinomialNB()

clf.fit(X_train, y_train)

```

步骤6:评估模型

我们将使用accuracy_score来评估模型的准确性。

```python

#评估模型

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

完整的代码如下所示:

```python

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

#读取数据

data = pd.read_csv('data.csv')

#查看前五个文本数据

print(data.head())

#使用CountVectorizer创建特征向量

vectorizer = CountVectorizer(stop_words='english')

X = vectorizer.fit_transform(data.text)

#将目标变量转换为数字

y = pd.factorize(data.label)[0]

#将数据集拆分到训练集和测试集中

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#训练模型

clf = MultinomialNB()

clf.fit(X_train, y_train)

#评估模型

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

相关推荐
飞哥数智坊7 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
AKAMAI10 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元11 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元12 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心12 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术12 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing12 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_12 小时前
NCCL的用户缓冲区注册
人工智能
sans_12 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算13 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc