机器学习的基本代码

步骤1:导入必要的库

```python

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

```

步骤2:准备数据

我们将使用一个示例数据集,包含两个类别(Positive和Negative),每个类别都有一些文本示例。我们将使用Pandas库来读取数据,并查看一些样本数据。

```python

#读取数据

data = pd.read_csv('data.csv')

#查看前五个文本数据

print(data.head())

```

步骤3:创建特征向量和目标变量

我们需要将文本转化为数字来训练我们的模型。使用CountVectorizer可以将文本转换为数字特征向量。我们还需要将目标变量(即分类标签)转换为数字。

```python

#使用CountVectorizer创建特征向量

vectorizer = CountVectorizer(stop_words='english')

X = vectorizer.fit_transform(data.text)

#将目标变量转换为数字

y = pd.factorize(data.label)[0]

```

步骤4:拆分数据集

我们需要将数据集拆分到训练集和测试集中,以便在训练模型时对其进行评估。我们将使用train_test_split函数来实现此功能。

```python

#将数据集拆分到训练集和测试集中

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

```

步骤5:训练模型

使用MultinomialNB可以训练我们的模型。MultinomialNB是一种常用于文本分类的朴素贝叶斯算法。

```python

#训练模型

clf = MultinomialNB()

clf.fit(X_train, y_train)

```

步骤6:评估模型

我们将使用accuracy_score来评估模型的准确性。

```python

#评估模型

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

完整的代码如下所示:

```python

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

#读取数据

data = pd.read_csv('data.csv')

#查看前五个文本数据

print(data.head())

#使用CountVectorizer创建特征向量

vectorizer = CountVectorizer(stop_words='english')

X = vectorizer.fit_transform(data.text)

#将目标变量转换为数字

y = pd.factorize(data.label)[0]

#将数据集拆分到训练集和测试集中

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#训练模型

clf = MultinomialNB()

clf.fit(X_train, y_train)

#评估模型

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

相关推荐
爱学习的uu7 分钟前
CURSOR最新使用指南及使用思路
人工智能·笔记·python·软件工程
Cathy Bryant25 分钟前
大模型损失函数(二):KL散度(Kullback-Leibler divergence)
笔记·神经网络·机器学习·数学建模·transformer
叶凡要飞28 分钟前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
叶庭云31 分钟前
一文掌握 CodeX CLI 安装以及使用!
人工智能·openai·安装·使用教程·codex cli·编码智能体·vibe coding 终端
yuluo_YX36 分钟前
VSR 项目解析
人工智能·python
cdming1 小时前
微软Win11双AI功能来袭:“AI管家”+聊天机器人重构桌面交互体验
人工智能·microsoft·机器人
罗西的思考2 小时前
[Agent] ACE(Agentic Context Engineering)和Dynamic Cheatsheet学习笔记
人工智能·机器学习
fantasy_arch2 小时前
transformer-注意力评分函数
人工智能·深度学习·transformer
逐云者1232 小时前
自动驾驶强化学习的价值对齐:奖励函数设计的艺术与科学
人工智能·机器学习·自动驾驶·自动驾驶奖励函数·奖励函数黑客防范·智能驾驶价值对齐
BreezeJuvenile2 小时前
深度学习实验一之图像特征提取和深度学习训练数据标注
人工智能·深度学习