机器学习的基本代码

步骤1:导入必要的库

```python

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

```

步骤2:准备数据

我们将使用一个示例数据集,包含两个类别(Positive和Negative),每个类别都有一些文本示例。我们将使用Pandas库来读取数据,并查看一些样本数据。

```python

#读取数据

data = pd.read_csv('data.csv')

#查看前五个文本数据

print(data.head())

```

步骤3:创建特征向量和目标变量

我们需要将文本转化为数字来训练我们的模型。使用CountVectorizer可以将文本转换为数字特征向量。我们还需要将目标变量(即分类标签)转换为数字。

```python

#使用CountVectorizer创建特征向量

vectorizer = CountVectorizer(stop_words='english')

X = vectorizer.fit_transform(data.text)

#将目标变量转换为数字

y = pd.factorize(data.label)[0]

```

步骤4:拆分数据集

我们需要将数据集拆分到训练集和测试集中,以便在训练模型时对其进行评估。我们将使用train_test_split函数来实现此功能。

```python

#将数据集拆分到训练集和测试集中

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

```

步骤5:训练模型

使用MultinomialNB可以训练我们的模型。MultinomialNB是一种常用于文本分类的朴素贝叶斯算法。

```python

#训练模型

clf = MultinomialNB()

clf.fit(X_train, y_train)

```

步骤6:评估模型

我们将使用accuracy_score来评估模型的准确性。

```python

#评估模型

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

完整的代码如下所示:

```python

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

#读取数据

data = pd.read_csv('data.csv')

#查看前五个文本数据

print(data.head())

#使用CountVectorizer创建特征向量

vectorizer = CountVectorizer(stop_words='english')

X = vectorizer.fit_transform(data.text)

#将目标变量转换为数字

y = pd.factorize(data.label)[0]

#将数据集拆分到训练集和测试集中

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#训练模型

clf = MultinomialNB()

clf.fit(X_train, y_train)

#评估模型

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

相关推荐
非著名架构师8 分钟前
团雾、结冰、大风——高速公路的“隐形杀手”:智慧气象预警如何为您的路网安全保驾护航
人工智能·新能源风光提高精度·疾风气象大模型4.0·疾风气象大模型·风光功率预测
IT_陈寒16 分钟前
Redis深度优化:10个让你的QPS提升50%的关键配置解析
前端·人工智能·后端
2501_9411429318 分钟前
5G与边缘计算结合在智能物流系统中的高效调度与实时监控应用研究
人工智能
2501_9411444223 分钟前
边缘计算与人工智能在智能制造生产线优化与故障预测中的应用研究
人工智能·边缘计算·制造
三寸33743 分钟前
硬刚GPT 5.1,Grok 4.1来了,所有用户免费使用!
人工智能·ai·ai编程
苍何1 小时前
Gemini3 强势来袭,这次前端真的死了。。。
人工智能
悟空CRM服务1 小时前
我用一条命令部署了完整CRM系统!
java·人工智能·开源·开源软件
组合缺一1 小时前
Solon AI 开发学习 - 1导引
java·人工智能·学习·ai·openai·solon
A-刘晨阳1 小时前
《华为数据之道》发行五周年暨《数据空间探索与实践》新书发布会召开,共探AI时代数据治理新路径
人工智能·华为
人工小情绪1 小时前
大模型运行的基本机制
人工智能