机器学习的基本代码

步骤1:导入必要的库

```python

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

```

步骤2:准备数据

我们将使用一个示例数据集,包含两个类别(Positive和Negative),每个类别都有一些文本示例。我们将使用Pandas库来读取数据,并查看一些样本数据。

```python

#读取数据

data = pd.read_csv('data.csv')

#查看前五个文本数据

print(data.head())

```

步骤3:创建特征向量和目标变量

我们需要将文本转化为数字来训练我们的模型。使用CountVectorizer可以将文本转换为数字特征向量。我们还需要将目标变量(即分类标签)转换为数字。

```python

#使用CountVectorizer创建特征向量

vectorizer = CountVectorizer(stop_words='english')

X = vectorizer.fit_transform(data.text)

#将目标变量转换为数字

y = pd.factorize(data.label)[0]

```

步骤4:拆分数据集

我们需要将数据集拆分到训练集和测试集中,以便在训练模型时对其进行评估。我们将使用train_test_split函数来实现此功能。

```python

#将数据集拆分到训练集和测试集中

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

```

步骤5:训练模型

使用MultinomialNB可以训练我们的模型。MultinomialNB是一种常用于文本分类的朴素贝叶斯算法。

```python

#训练模型

clf = MultinomialNB()

clf.fit(X_train, y_train)

```

步骤6:评估模型

我们将使用accuracy_score来评估模型的准确性。

```python

#评估模型

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

完整的代码如下所示:

```python

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

#读取数据

data = pd.read_csv('data.csv')

#查看前五个文本数据

print(data.head())

#使用CountVectorizer创建特征向量

vectorizer = CountVectorizer(stop_words='english')

X = vectorizer.fit_transform(data.text)

#将目标变量转换为数字

y = pd.factorize(data.label)[0]

#将数据集拆分到训练集和测试集中

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#训练模型

clf = MultinomialNB()

clf.fit(X_train, y_train)

#评估模型

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

```

相关推荐
reddingtons34 分钟前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK36 分钟前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
Deepoch2 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch2 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines2 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey2 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币2 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
平和男人杨争争3 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
归去_来兮3 小时前
支持向量机(SVM)分类
机器学习·支持向量机·分类
静心问道3 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别