- 知乎大神的概括:
- VCMFrameBuffer 帧中包含VCMSessionInfo的处理,对VPX、h264(分析Nalus)的同一帧中的所有包进行过滤并进行完整帧组帧,用于sink给后续的解码。
- 用于解码器的
- 所以插入的数据都是VCMPacket
- frame_buffer指向一帧的起始数据地址,首先能对待插入list 的packet 有序的插入,按照序号来的,
- 检查是否完整,然后frame_buffer 就是这帧的数据了。
- 零声有对应的讲解
最大的可解码帧大小2MB
- session 允许的包队列大小(一个帧的对应的所有包组成了这个队列?)
1400个包,大约20MB
反向迭代器ReversePacketIterator 的 base() 方法
- base()可以将一个反向迭代器变成一个正向迭代器
cpp
int VCMSessionInfo::InsertPacket(const VCMPacket& packet,
uint8_t* frame_buffer,
const FrameData& frame_data) {
视频头里有一个视频帧的类型:空帧
if (packet.video_header.frame_type == VideoFrameType::kEmptyFrame) {
对于空包,要更新序号,这种不是媒体包
// Update sequence number of an empty packet.
// Only media packets are inserted into the packet list.
InformOfEmptyPacket(packet.seqNum);
return 0;
}
每个frame能接受的包最大1400个
if (packets_.size() == kMaxPacketsInSession) {
RTC_LOG(LS_ERROR) << "Max number of packets per frame has been reached.";
return -1;
}
反向遍历:找到这个包在包队列中的位置,然后插入。
以相反的顺序循环遍历列表。
// Find the position of this packet in the packet list in sequence number
// order and insert it. Loop over the list in reverse order.
以相反的顺序循环遍历列表。
ReversePacketIterator rit = packets_.rbegin();
for (; rit != packets_.rend(); ++rit)
从后向前看,包的序号比较,如果输入的比当前包要新,那么找到了要插入的位置了,break掉for
if (LatestSequenceNumber(packet.seqNum, (*rit).seqNum) == packet.seqNum)
break;
检查包是否重复了:
遍历过程中,找到了同序号的包,并且这个包还是有数据的,咋办? 返回错误 -2, 输入的包插入失败。
// Check for duplicate packets.
if (rit != packets_.rend() && (*rit).seqNum == packet.seqNum &&
(*rit).sizeBytes > 0)
return -2;
if (packet.codec() == kVideoCodecH264) {
frame_type_ = packet.video_header.frame_type;
当前输入包在frame中是首个,并且(还没记录到首个包的序号 或者 记录到了但是比输入包的序号要新),则记录为首个包
if (packet.is_first_packet_in_frame() &&
(first_packet_seq_num_ == -1 ||
IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum))) {
first_packet_seq_num_ = packet.seqNum;
}
如果输入包是最后一个包,并且 (还没记录最后包的序号 或者 输入包的序号比记录到的序号要新,那么更新记录到最后包序号为最新的这个包的序号)
if (packet.markerBit &&
(last_packet_seq_num_ == -1 ||
IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_))) {
last_packet_seq_num_ = packet.seqNum;
}
#ifdef OWT_ENABLE_H265
} else if (packet.codec() == kVideoCodecH265) {
frame_type_ = packet.video_header.frame_type;
if (packet.is_first_packet_in_frame() &&
(first_packet_seq_num_ == -1 ||
IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum))) {
first_packet_seq_num_ = packet.seqNum;
}
if (packet.markerBit &&
(last_packet_seq_num_ == -1 ||
IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_))) {
last_packet_seq_num_ = packet.seqNum;
}
#else
} else {
#endif
只能在首包和末尾包之间插入:
// Only insert media packets between first and last packets (when
// available).
// Placing check here, as to properly account for duplicate packets.
// Check if this is first packet (only valid for some codecs)
// Should only be set for one packet per session.
if (packet.is_first_packet_in_frame() && first_packet_seq_num_ == -1) {
// The first packet in a frame signals the frame type.
frame_type_ = packet.video_header.frame_type;
// Store the sequence number for the first packet.
first_packet_seq_num_ = static_cast<int>(packet.seqNum);
} else if (first_packet_seq_num_ != -1 &&
如果已经有首个包的序号,输入包竟然比首包来的海湾,那么返回-3
IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum)) {
RTC_LOG(LS_WARNING)
<< "Received packet with a sequence number which is out "
"of frame boundaries";
return -3;
} else if (frame_type_ == VideoFrameType::kEmptyFrame &&
packet.video_header.frame_type != VideoFrameType::kEmptyFrame) {
// Update the frame type with the type of the first media packet.
// TODO(mikhal): Can this trigger?
frame_type_ = packet.video_header.frame_type;
}
// Track the marker bit, should only be set for one packet per session.
if (packet.markerBit && last_packet_seq_num_ == -1) {
last_packet_seq_num_ = static_cast<int>(packet.seqNum);
} else if (last_packet_seq_num_ != -1 &&
IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_)) {
RTC_LOG(LS_WARNING)
<< "Received packet with a sequence number which is out "
"of frame boundaries";
return -3;
}
}
在某个位置上插入包:
插入操作使迭代器失效
base()可以将一个反向迭代器变成一个正向迭代器
// The insert operation invalidates the iterator |rit|.
这个会在rit位置的正向位置的后面插入packet
PacketIterator packet_list_it = packets_.insert(rit.base(), packet);
size_t returnLength = InsertBuffer(frame_buffer, packet_list_it);
UpdateCompleteSession();
return static_cast<int>(returnLength);
}
- 传递了一个包的正向迭代器:
InsertBuffer是为了避免内存拷贝?
- 知乎大神的分析:
- 分析下源码:
cpp
size_t VCMSessionInfo::InsertBuffer(uint8_t* frame_buffer,
PacketIterator packet_it) {
VCMPacket& packet = *packet_it; //取出这个包
PacketIterator it; //正向迭代
// Calculate the offset into the frame buffer for this packet.
size_t offset = 0;
//正向遍历
for (it = packets_.begin(); it != packet_it; ++it)
//记录每个包的offset
offset += (*it).sizeBytes;
//frame_buffer 这个指针用来收集所有的包的数据部分,这样确实可以避免拷贝内存
// Set the data pointer to pointing to the start of this packet in the
// frame buffer.
const uint8_t* packet_buffer = packet.dataPtr;
packet.dataPtr = frame_buffer + offset;
STAP-A 分判断H.264 数据:用一种特殊的方式去掉两个NAL单元之间的2个字节长度,并且加上起始码
// We handle H.264 STAP-A packets in a special way as we need to remove the
// two length bytes between each NAL unit, and potentially add start codes.
// TODO(pbos): Remove H264 parsing from this step and use a fragmentation
// header supplied by the H264 depacketizer.
const size_t kH264NALHeaderLengthInBytes = 1;
#ifdef OWT_ENABLE_H265
const size_t kH265NALHeaderLengthInBytes = 2;
const auto* h265 =
absl::get_if<RTPVideoHeaderH265>(&packet.video_header.video_type_header);
#endif
const size_t kLengthFieldLength = 2;
const auto* h264 =
absl::get_if<RTPVideoHeaderH264>(&packet.video_header.video_type_header);
if (h264 && h264->packetization_type == kH264StapA) {
size_t required_length = 0;
const uint8_t* nalu_ptr = packet_buffer + kH264NALHeaderLengthInBytes;
while (nalu_ptr < packet_buffer + packet.sizeBytes) {
size_t length = BufferToUWord16(nalu_ptr);
required_length +=
length + (packet.insertStartCode ? kH264StartCodeLengthBytes : 0);
nalu_ptr += kLengthFieldLength + length;
}
ShiftSubsequentPackets(packet_it, required_length);
nalu_ptr = packet_buffer + kH264NALHeaderLengthInBytes;
uint8_t* frame_buffer_ptr = frame_buffer + offset;
while (nalu_ptr < packet_buffer + packet.sizeBytes) {
size_t length = BufferToUWord16(nalu_ptr);
nalu_ptr += kLengthFieldLength;
frame_buffer_ptr += Insert(nalu_ptr, length, packet.insertStartCode,
const_cast<uint8_t*>(frame_buffer_ptr));
nalu_ptr += length;
}
packet.sizeBytes = required_length;
return packet.sizeBytes;
}
#ifdef OWT_ENABLE_H265
else if (h265 && h265->packetization_type == kH265AP) {
// Similar to H264, for H265 aggregation packets, we rely on jitter buffer
// to remove the two length bytes between each NAL unit, and potentially add
// start codes.
size_t required_length = 0;
const uint8_t* nalu_ptr =
packet_buffer + kH265NALHeaderLengthInBytes; // skip payloadhdr
while (nalu_ptr < packet_buffer + packet.sizeBytes) {
size_t length = BufferToUWord16(nalu_ptr);
required_length +=
length + (packet.insertStartCode ? kH265StartCodeLengthBytes : 0);
nalu_ptr += kLengthFieldLength + length;
}
ShiftSubsequentPackets(packet_it, required_length);
nalu_ptr = packet_buffer + kH265NALHeaderLengthInBytes;
uint8_t* frame_buffer_ptr = frame_buffer + offset;
while (nalu_ptr < packet_buffer + packet.sizeBytes) {
size_t length = BufferToUWord16(nalu_ptr);
nalu_ptr += kLengthFieldLength;
// since H265 shares the same start code as H264, use the same Insert
// function to handle start code.
frame_buffer_ptr += Insert(nalu_ptr, length, packet.insertStartCode,
const_cast<uint8_t*>(frame_buffer_ptr));
nalu_ptr += length;
}
packet.sizeBytes = required_length;
return packet.sizeBytes;
}
#endif
ShiftSubsequentPackets(
packet_it, packet.sizeBytes +
(packet.insertStartCode ? kH264StartCodeLengthBytes : 0));
packet.sizeBytes =
Insert(packet_buffer, packet.sizeBytes, packet.insertStartCode,
const_cast<uint8_t*>(packet.dataPtr));
return packet.sizeBytes;
}
判断是否是完整的一帧:UpdateCompleteSession
- 有头、有尾的包,
- 如果InSequence == false ,那么 不完整。
- 也就说InSequence 比如返回true:
cpp
void VCMSessionInfo::UpdateCompleteSession() {
if (HaveFirstPacket() && HaveLastPacket()) {
// Do we have all the packets in this session?
bool complete_session = true;
PacketIterator it = packets_.begin();
PacketIterator prev_it = it;
++it;
for (; it != packets_.end(); ++it) {
//第一次,it是第二个包,previt是第一个包:
if (!InSequence(it, prev_it)) {
complete_session = false;
break;
}
//prev 会变为it的位置,第一次后就是第二个包
prev_it = it;
}
complete_ = complete_session;
}
}
InSequence 返回true 就是连续的包
// 判断并更新帧是否完整(组包完成),即判断packets_之间是否有空洞(不连续)
- 为啥相等也是连续的???
ShiftSubsequentPackets 移动后续的包:
cpp
void VCMSessionInfo::ShiftSubsequentPackets(PacketIterator it,
int steps_to_shift) {
//从当前it的后面开始
++it;
if (it == packets_.end()) //it 后刚好是最后一个 ,退出
return;
//后面那个开始,作为第一个包,获取数据部分的指针
uint8_t* first_packet_ptr = const_cast<uint8_t*>((*it).dataPtr);
int shift_length = 0; //需要移动的长度
计算总共要移动的长度,提前移动数据指针
// Calculate the total move length and move the data pointers in advance.
//遍历
for (; it != packets_.end(); ++it) {
//每个包移动的长度 累加
shift_length += (*it).sizeBytes;
//改变数据指针的指向的内存位置:每个包的数据部分都后移steps_to_shift 这么大???
if ((*it).dataPtr != NULL)
(*it).dataPtr += steps_to_shift;
}
//搬运内存,把当前包后面的包的所有数据(first_packet_ptr, shift_length) 移动到first_packet_ptr + steps_to_shift 开始?
memmove(first_packet_ptr + steps_to_shift, first_packet_ptr, shift_length);
}