facechain环境部署

环境安装

powershell 复制代码
# 创建虚拟环境facechain
conda create -n facechain python=3.8
conda activate facechain
# 克隆
GIT_LFS_SKIP_SMUDGE=1 git clone https://github.com/modelscope/facechain.git --depth 1
# 安装第三方库
cd facechain
pip install -r requirements.txt
pip install -U openmim
# 设置所需的CUDA,因为安装了多个版本的CUDA
export PATH=/home/xxx/.local/cuda-11.7/bin:$PATH
export LD_LIBRARY_PATH=LD_LIBRARY_PATH:/home/xxx/.local/cuda-11.7/lib64
export CUDA_HOME=/home/xxx/.local/cuda-11.7
# 安装mmcv
mim install mmcv-full==1.7.0

webui的运行方式

  • app.py文件增加临时文件存放位置,因为多个人使用同一个服务,gradio的临时文件会存放在/tmp/gradio下存在权限问题。

    python 复制代码
     import tempfile
     tempfile.tempdir = './tmp'
  • app.py文件修改modelscope和huggingface的目录

    python 复制代码
    	import os
    	os.environ['MODELSCOPE_CACHE'] = '/opt/buty/work/modelscope'
    	os.environ['HF_HOME'] = '/opt/buty/work/huggingface'
    	os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  • snapdown 文件的路径使用临时文件存放位置还是有问题,需要修改/tmp/snapdown/目录的权限

    powershell 复制代码
    sudo chmod -R 777 /tmp/snapdown/
  • 运行脚本

    powershell 复制代码
        python app.py

命令行交互界面的运行方式

  • train_text_to_image_lora.py文件修改modelscope和huggingface的目录

    python 复制代码
    	import os
    	os.environ['MODELSCOPE_CACHE'] = '/opt/buty/work/modelscope'
    	os.environ['HF_HOME'] = '/opt/buty/work/huggingface'
    	os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  • 模型训练

    python 复制代码
    PYTHONPATH=. sh train_lora.sh "ly261666/cv_portrait_model" "v2.0" "film/film" "./imgs" "./processed" "./output"
  • 推理

    python 复制代码
    python run_inference.py

pycharm的运行方式

复制代码
train_text_to_image_lora.py脚本Edit Configurations设置:
Name:accelerate.commands.launch
Run:facechain module accelerate.commands.launch
Parameters:
		facechain/train_text_to_image_lora.py
		--pretrained_model_name=ly261666/cv_portrait_model
		--revision=v2.0
		--sub_path=film/film
		--train_data_dir=./imgs
		--output_dataset_name=./processed
		--output_dir=./output
Working directory:/opt/buty/work/facechain
Environment variables:
        CUDA_VISIBLE_DEVICES:0
		PYTHONPATH: .

参考资料
modelscope/facechain

相关推荐
Elaine3362 天前
基于 Qwen2.5 与 LLaMA-Factory 的 LoRA 微调实战
人工智能·lora·微调·llama·llama-factory
YJlio3 天前
Contig 学习笔记(13.5):整理现有文件碎片的策略与批量实战
笔记·学习·stable diffusion
YJlio3 天前
Contig 学习笔记(13.4):单文件碎片整理工具的原理与基本用法
笔记·学习·stable diffusion
木卫二号Coding3 天前
第六十九篇-NVIDIA V100-32G+Stable-Diffusion-WebUI
stable diffusion
一只大侠的侠3 天前
Stable Diffusion 3.5 FP8文生图技术深度解析与应用探索
stable diffusion
吐个泡泡v4 天前
Stable Diffusion WebUI云部署
ai·stable diffusion·sd webui·linux部署
love530love4 天前
【笔记】ComfyUI 启动时端口被占用(PermissionError [winerror 10013])解决方案
人工智能·windows·笔记·stable diffusion·aigc·端口·comfyui
码农进厂打螺丝4 天前
Stable Diffusion 3.5 FP8:量化优化与部署实践
人工智能·计算机视觉·stable diffusion
无心水5 天前
【Stable Diffusion 3.5 FP8】8、生产级保障:Stable Diffusion 3.5 FP8 伦理安全与问题排查
人工智能·python·安全·docker·stable diffusion·ai镜像开发·镜像实战开发
tap.AI5 天前
(五)Stable Diffusion 3.5-LoRA 适配、ControlNet 与模型微调
人工智能·stable diffusion