facechain环境部署

环境安装

powershell 复制代码
# 创建虚拟环境facechain
conda create -n facechain python=3.8
conda activate facechain
# 克隆
GIT_LFS_SKIP_SMUDGE=1 git clone https://github.com/modelscope/facechain.git --depth 1
# 安装第三方库
cd facechain
pip install -r requirements.txt
pip install -U openmim
# 设置所需的CUDA,因为安装了多个版本的CUDA
export PATH=/home/xxx/.local/cuda-11.7/bin:$PATH
export LD_LIBRARY_PATH=LD_LIBRARY_PATH:/home/xxx/.local/cuda-11.7/lib64
export CUDA_HOME=/home/xxx/.local/cuda-11.7
# 安装mmcv
mim install mmcv-full==1.7.0

webui的运行方式

  • app.py文件增加临时文件存放位置,因为多个人使用同一个服务,gradio的临时文件会存放在/tmp/gradio下存在权限问题。

    python 复制代码
     import tempfile
     tempfile.tempdir = './tmp'
  • app.py文件修改modelscope和huggingface的目录

    python 复制代码
    	import os
    	os.environ['MODELSCOPE_CACHE'] = '/opt/buty/work/modelscope'
    	os.environ['HF_HOME'] = '/opt/buty/work/huggingface'
    	os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  • snapdown 文件的路径使用临时文件存放位置还是有问题,需要修改/tmp/snapdown/目录的权限

    powershell 复制代码
    sudo chmod -R 777 /tmp/snapdown/
  • 运行脚本

    powershell 复制代码
        python app.py

命令行交互界面的运行方式

  • train_text_to_image_lora.py文件修改modelscope和huggingface的目录

    python 复制代码
    	import os
    	os.environ['MODELSCOPE_CACHE'] = '/opt/buty/work/modelscope'
    	os.environ['HF_HOME'] = '/opt/buty/work/huggingface'
    	os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  • 模型训练

    python 复制代码
    PYTHONPATH=. sh train_lora.sh "ly261666/cv_portrait_model" "v2.0" "film/film" "./imgs" "./processed" "./output"
  • 推理

    python 复制代码
    python run_inference.py

pycharm的运行方式

复制代码
train_text_to_image_lora.py脚本Edit Configurations设置:
Name:accelerate.commands.launch
Run:facechain module accelerate.commands.launch
Parameters:
		facechain/train_text_to_image_lora.py
		--pretrained_model_name=ly261666/cv_portrait_model
		--revision=v2.0
		--sub_path=film/film
		--train_data_dir=./imgs
		--output_dataset_name=./processed
		--output_dir=./output
Working directory:/opt/buty/work/facechain
Environment variables:
        CUDA_VISIBLE_DEVICES:0
		PYTHONPATH: .

参考资料
modelscope/facechain

相关推荐
吐个泡泡v1 天前
扩散模型详解:从DDPM到Stable Diffusion再到DiT的技术演进
stable diffusion·transformer·扩散模型·ddpm·dit
Blossom.1181 天前
基于MLOps+LLM的模型全生命周期自动化治理系统:从数据漂移到智能回滚的落地实践
运维·人工智能·学习·决策树·stable diffusion·自动化·音视频
不会kao代码的小王4 天前
openEuler上Docker部署Kafka消息队列实战
前端·云原生·stable diffusion·eureka
Blossom.1186 天前
基于多智能体强化学习的云资源调度系统:如何用MARL把ECS成本打下来60%
人工智能·python·学习·决策树·机器学习·stable diffusion·音视频
Yeliang Wu7 天前
Stable Diffusion WebUI 从安装到实战:原理、部署与问题全解
stable diffusion
小鱼儿电子7 天前
56-基于LoRa的水质监测系统设计与实现
stm32·单片机·嵌入式硬件·lora·腾讯云平台
Yeliang Wu7 天前
ComfyUI 全流程指南:安装、配置、插件与模型选型
stable diffusion·文生图·图生图·comfyui
LCG米8 天前
[OpenVINO实战] 在边缘设备上运行Stable Diffusion,实现离线文生图
人工智能·stable diffusion·openvino
水上冰石8 天前
rtx5060部署stable-diffusion1.10.1版本注意事项
stable diffusion
七夜zippoe8 天前
轻量模型微调:LoRA、QLoRA实战对比与工程实践指南
人工智能·深度学习·算法·lora·qlora·量化训练