facechain环境部署

环境安装

powershell 复制代码
# 创建虚拟环境facechain
conda create -n facechain python=3.8
conda activate facechain
# 克隆
GIT_LFS_SKIP_SMUDGE=1 git clone https://github.com/modelscope/facechain.git --depth 1
# 安装第三方库
cd facechain
pip install -r requirements.txt
pip install -U openmim
# 设置所需的CUDA,因为安装了多个版本的CUDA
export PATH=/home/xxx/.local/cuda-11.7/bin:$PATH
export LD_LIBRARY_PATH=LD_LIBRARY_PATH:/home/xxx/.local/cuda-11.7/lib64
export CUDA_HOME=/home/xxx/.local/cuda-11.7
# 安装mmcv
mim install mmcv-full==1.7.0

webui的运行方式

  • app.py文件增加临时文件存放位置,因为多个人使用同一个服务,gradio的临时文件会存放在/tmp/gradio下存在权限问题。

    python 复制代码
     import tempfile
     tempfile.tempdir = './tmp'
  • app.py文件修改modelscope和huggingface的目录

    python 复制代码
    	import os
    	os.environ['MODELSCOPE_CACHE'] = '/opt/buty/work/modelscope'
    	os.environ['HF_HOME'] = '/opt/buty/work/huggingface'
    	os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  • snapdown 文件的路径使用临时文件存放位置还是有问题,需要修改/tmp/snapdown/目录的权限

    powershell 复制代码
    sudo chmod -R 777 /tmp/snapdown/
  • 运行脚本

    powershell 复制代码
        python app.py

命令行交互界面的运行方式

  • train_text_to_image_lora.py文件修改modelscope和huggingface的目录

    python 复制代码
    	import os
    	os.environ['MODELSCOPE_CACHE'] = '/opt/buty/work/modelscope'
    	os.environ['HF_HOME'] = '/opt/buty/work/huggingface'
    	os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  • 模型训练

    python 复制代码
    PYTHONPATH=. sh train_lora.sh "ly261666/cv_portrait_model" "v2.0" "film/film" "./imgs" "./processed" "./output"
  • 推理

    python 复制代码
    python run_inference.py

pycharm的运行方式

复制代码
train_text_to_image_lora.py脚本Edit Configurations设置:
Name:accelerate.commands.launch
Run:facechain module accelerate.commands.launch
Parameters:
		facechain/train_text_to_image_lora.py
		--pretrained_model_name=ly261666/cv_portrait_model
		--revision=v2.0
		--sub_path=film/film
		--train_data_dir=./imgs
		--output_dataset_name=./processed
		--output_dir=./output
Working directory:/opt/buty/work/facechain
Environment variables:
        CUDA_VISIBLE_DEVICES:0
		PYTHONPATH: .

参考资料
modelscope/facechain

相关推荐
空白诗1 天前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion
学易1 天前
第十五节.别人的工作流,如何使用和调试(上)?(2类必现报错/缺失节点/缺失模型/思路/实操/通用调试步骤)
人工智能·ai作画·stable diffusion·报错·comfyui·缺失节点
无名修道院1 天前
自学AI制作小游戏
人工智能·lora·ai大模型应用开发·小游戏制作
心疼你的一切2 天前
基于CANN仓库算力手把手实现Stable Diffusion图像生成(附完整代码+流程图)
数据仓库·深度学习·stable diffusion·aigc·流程图·cann
Niuguangshuo3 天前
DALL-E 3:如何通过重构“文本描述“革新图像生成
人工智能·深度学习·计算机视觉·stable diffusion·重构·transformer
Niuguangshuo3 天前
深入解析 Stable Diffusion XL(SDXL):改进潜在扩散模型,高分辨率合成突破
stable diffusion
Niuguangshuo3 天前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火3 天前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
迈火11 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
重启编程之路11 天前
Stable Diffusion 参数记录
stable diffusion