AWS SAA-C03 #207

A company owns an asynchronous API that is used to ingest user requests and, based on the request type, dispatch requests to the appropriate microservice for processing. The company is using Amazon API Gateway to deploy the API front end, and an AWS Lambda function that invokes Amazon DynamoDB to store user requests before dispatching them to the processing microservices.

The company provisioned as much DynamoDB throughput as its budget allows, but the company is still experiencing availability issues and is losing user requests.

What should a solutions architect do to address this issue without impacting existing users?

A. Add throttling on the API Gateway with server-side throttling limits.

B. Use DynamoDB Accelerator (DAX) and Lambda to buffer writes to DynamoDB.

C. Create a secondary index in DynamoDB for the table with the user requests.

D. Use the Amazon Simple Queue Service (Amazon SQS) queue and Lambda to buffer writes to DynamoDB.


The best solution to address this issue without impacting existing users would be Option D: Use the Amazon Simple Queue Service (Amazon SQS) queue and Lambda to buffer writes to DynamoDB.

Here's why:

  • Option A: Add throttling on the API Gateway with server-side throttling limits. This option might prevent the system from being overwhelmed by too many requests at once, but it doesn't solve the problem of DynamoDB's throughput limit being reached. It might also result in user requests being denied if the throttling limit is too low.
  • Option B: Use DynamoDB Accelerator (DAX) and Lambda to buffer writes to DynamoDB. DAX is a fully managed, highly available, in-memory cache for DynamoDB that can accelerate reads from DynamoDB tables by up to 10 times, even at millions of requests per second. However, DAX does not help with write throughput.
  • Option C: Create a secondary index in DynamoDB for the table with the user requests. Secondary indexes can improve read performance, but they do not increase write capacity.
  • Option D: Use the Amazon Simple Queue Service (Amazon SQS) queue and Lambda to buffer writes to DynamoDB. This option decouples the data ingestion process from the write process into DynamoDB. The SQS service can handle any level of throughput without losing messages or requiring other services to throttle themselves. This is likely the best solution because it addresses the issue of lost user requests due to exceeding the provisioned DynamoDB throughput.

Remember, it's always important to consider your specific use case and requirements when choosing a solution! 😊

相关推荐
atom goper3 小时前
AWS VPC Peering
aws
阿里云大数据AI技术6 小时前
ODPS 15周年开发者活动|征文+动手实践双赛道开启,参与活动赢定制好礼!
大数据·人工智能·云计算
慧星云8 小时前
ComfyUI工作流 :一键二次元角色转真人
人工智能·云计算·aigc
容器魔方9 小时前
开源之夏2025 | Karmada 社区中选学生名单公布!
云原生·容器·云计算
成都极云科技12 小时前
成都算力租赁新趋势:H20 八卡服务器如何重塑 AI 产业格局?
大数据·服务器·人工智能·云计算·gpu算力
泊浮目13 小时前
未来数据库硬件-计算篇
数据库·云计算·操作系统
Love__Tay1 天前
笔记/云计算基础
笔记·学习·云计算
学术小八1 天前
第二届云计算与大数据国际学术会议(ICCBD 2025)
大数据·云计算
容器魔方1 天前
中选名单出炉|18位学生入选开源之夏KubeEdge课题,欢迎加入!
云原生·容器·云计算
Johny_Zhao2 天前
Docker + CentOS 部署 Zookeeper 集群 + Kubernetes Operator 自动化运维方案
linux·网络安全·docker·信息安全·zookeeper·kubernetes·云计算·系统运维