试试本地搭建AI模型-ChatGLM-6B(4)

上面我们已经完成了,部署所需要的所有环境配置,接下来就开始部署ChatGLM-6B模型吧!

章节

下载官方代码,安装Python依赖的库

首先,我们需要从GitHub上下载ChatGLM的requirements.txt来帮助我们安装依赖的库。

下载地址:github.com/THUDM/ChatG...

下载完成后我们进入项目内,找到requirements.txt,这个文件记录了ChatGLM-6B依赖的Python库及版本。进入cmd,执行以下命令:

复制代码
pip install -r requirements.txt

下载INT4量化后的预训练结果文件

在上述的依赖环境安装完毕之后,大家接下来就要下载预训练结果。

INT4量化的预训练文件下载地址:huggingface.co/THUDM/chatg...

需要注意的是,在GitHub上,官方提供了模型在清华云上的下载地址,但是那个只包含预训练结果文件,即bin文件,但实际上ChatGLM-6B的运行需要模型的配置文件,即config.json等,如下图所示:

因此建议大家全部从HuggingFace上下载所有文件到本地。上述文件全部下载之后保存到本地的一个目录下即可,我们保存在 E:\Desktop\AI\glm-train-data\model

运行ChatGLM-6B模型

01.确认好自己本地模型路径并修改路径格式:

E:\Desktop\AI\glm-train-data\model

02.解决No compiled kernel found问题

模型自动编译会报错,所以我们需要提前手动对模型文件进行编译:

找到我们模型存放的地址,进入cmd执行以下命令(注意:gcc上述文章有介绍):

ini 复制代码
gcc -fPIC -pthread -fopenmp -std=c99 quantization_kernels.c -shared -o quantization_kernels.so
gcc -fPIC -pthread -fopenmp -std=c99 quantization_kernels_parallel.c -shared -o quantization_kernels_parallel.so

如下图所示即为运行成功

大家可以看到多了2个编译后的文件

03.使用cpu运行模型

  • 进入cmd
  • 输入python,进入python环境
  • 执行以下指令(模型路径更换自己的本地路径)
ini 复制代码
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("E:\Desktop\AI\glm-train-data\model", trust_remote_code=True, revision="")
model = AutoModel.from_pretrained("E:\Desktop\AI\glm-train-data\model",trust_remote_code=True, revision="").float()
model = model.quantize(bits=4, kernel_file="E:\Desktop\AI\glm-train-data\model\quantization_kernels.so")
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)

经过漫长的等待后,执行结束!cpu模式训练时间太长,基本可以放弃

04.使用GPU版本运行

上面cuda,torch等环境都是为了GPU版本的运行而准备(注意:提前看自己的显存!)

  • 进入cmd
  • 输入python,进入python环境
  • 执行以下指令(模型路径更换自己的本地路径)
ini 复制代码
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("E:\Desktop\AI\glm-train-data\model", trust_remote_code=True, revision="")
model = AutoModel.from_pretrained("E:\Desktop\AI\glm-train-data\model", trust_remote_code=True, revision="").half().cuda()
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)

很多我们就运行成功啦!

当然也会出现以下情况😭,显存不足!!!!

这种情况只好尝试清理显存占用,如果还不行,就只能使用缓慢的cpu模式调试或者更换机器啦!

  • 查看显存情况 nvidia-smi
  • 释放显存 torch.cuda.empty_cache()
  • 总结

01.GPU显存占用率和存入的数据尺寸成正相关,越大的数据占用显存越多

02.只要使用了GPU,就至少会占x xx M的显存,且这部分显存无法被释放

03.当一块内存不再被变量所引用时,这块内存就由激活内存转为失活内存,但它仍然存在于这个数据队列中

04.当数据队列达到某个阈值时,CUDA会触发垃圾回收机制,清理失活内存

05.运行torch.cuda.empty_cache()可以手动清理失活内存

相关推荐
书唐瑞23 分钟前
谷歌浏览器和火狐浏览器对HTML的嗅探(Sniff)能力
前端·html
rocky19131 分钟前
谷歌浏览器插件 使用 playwright 回放用户动作键盘按键特殊处理方案
前端
Yeats_Liao33 分钟前
Go Web 编程快速入门 06 - 响应 ResponseWriter:状态码与头部
开发语言·后端·golang
mit6.82435 分钟前
[Agent可视化] 编排工作流(Go) | Temporal引擎 | DAG调度器 | ReAct模式实现
开发语言·后端·golang
rocky19135 分钟前
playwright里兼容处理回放无界微前端内iframe内部元素事件和不在无界微前端内的iframe元素
前端
rocky19137 分钟前
谷歌浏览器插件 使用 playwright 回放slide 拖动动作
前端
时空无限1 小时前
conda 管理 python 版本和虚拟环境
python·conda
惺忪97981 小时前
回调函数的概念
开发语言·前端·javascript
隔壁程序员老王1 小时前
基于 Python 的坦克大战小程序,使用 Pygame 库开发
python·小程序·pygame·1024程序员节
前端 贾公子1 小时前
Element Plus组件v-loading在el-dialog组件上使用无效
前端·javascript·vue.js