如何通过AI视频智能分析技术,构建着装规范检测/工装穿戴检测系统?

众所周知,规范着装在很多场景中起着重要的作用。违规着装极易增加安全隐患,并且引发安全事故和质量问题,例如,在化工工厂中,倘若员工没有穿戴符合要求的特殊防护服和安全鞋,将有极大可能受到有害物质的侵害,对身体健康和生命安全带来严重的威胁。

TSINGSEE青犀视频AI算法平台的着装规范检测/工装穿戴检测算法,是基于AI深度学习,通过计算机视觉技术准确地识别特定区域内工人是否穿戴是否合规,包括工作服、反光衣、安全帽等,常用于工地、工厂、车间、电力等场景中。当员工穿着不符合规范时,系统会发出告警提示,监管人员通过告警消息对违规着装事件进行处理,以确保生产环境的安全。

1)未戴安全帽:支持识别包含红、白、蓝、灰、黄等颜色在内的安全帽目标识别;支持在划定区域内检测是否有未戴安全帽的工人。

2)未穿反光背心:支持识别橙色、莹绿色开襟马甲、套衫马甲工作服的目标识别,以及人形检测;支持在划定区域内检测是否有未穿工作服的工人。

3)未戴口罩识别:支持对人脸是否佩戴口罩进行检测。

4)工作服识别:支持识别港口、电力施工、维修、保洁等角色的人员是否穿戴工作服。

在应用场景中,通过在服务器端部署AI算法平台,将监管现场的监控视频流接入并进行实时智能分析与预警。一旦检测到有人员未按照规定着装时,会在视频画面中实时框出该人员,抓拍截图、并记录。告警消息支持弹窗、语音等形式进行提醒,协助管理人员及时进行干预。此外,在系统的告警中心里,也能查看和检索告警信息。

应用场景:

1)建筑工地:自动识别监测未穿着反光衣、未戴安全帽的工作人员,提高工地安全性,减少潜在的事故风险。

2)仓储物流:自动识别监测未着工服的陌生人员,提高仓储物流工作场所安全性,减少人力监管成本。

3)危化工厂:自动识别未穿工作服、未戴口罩的工作人员,一旦检测到将立即触发告警。

4)电力巡检:对作业人员工服着装及施工环境规范做出监控预警,规范工作流程,标准化流程管控,确保作业过程中各环节安全有序。

相关推荐
老金带你玩AI1 分钟前
CC本次更新最强的不是OPUS4.6,而是Agent Swarm(蜂群)
大数据·人工智能
凯子坚持 c3 分钟前
CANN-LLM WebUI:打造国产 LLM 推理的“驾驶舱
人工智能
wukangjupingbb6 分钟前
AI驱动药物研发(AIDD)的开源生态
人工智能
2401_8362358610 分钟前
中安未来行驶证识别:以OCR智能力量,重构车辆证件数字化效率
人工智能·深度学习·ocr
X54先生(人文科技)10 分钟前
《元创力》开源项目库已经创建
人工智能·架构·开源软件
无心水10 分钟前
分布式定时任务与SELECT FOR UPDATE:从致命陷阱到优雅解决方案(实战案例+架构演进)
服务器·人工智能·分布式·后端·spring·架构·wpf
John_ToDebug14 分钟前
在代码的黄昏,建筑师诞生:从打字员到AI协作设计者的范式革命
人工智能·程序人生
水中加点糖15 分钟前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
Yaozh、19 分钟前
【神经网络中的Dropout随机失活问题】
人工智能·深度学习·神经网络