Kafka 集群与可靠性

文章目录

Kafka集群的目标

  1. 高并发
  2. 高可用
  3. 动态伸缩

Kafka集群规模如何预估

吞吐量:

集群可以提高处理请求的能力。单个Broker的性能不足,可以通过扩展broker来解决。

磁盘空间:

如果一个集群有10TB的数据需要保留,而每个broker可以存储2TB,那么至少需要5个broker。如果启用了数据复制,则还需要一倍的空间,那么这个集群需要10个broker。

Kafka集群搭建实战

使用两台Linux服务器:一台192.68.10.7 一台192.168.10.8

192.68.10.7 的配置信息修改

192.168.10.8的配置信息修改

Kafka集群原理

成员关系与控制器

控制器其实就是一个broker, 只不过它除了具有一般 broker的功能之外, 还负责分区Leader的选举。

当控制器发现一个broker加入集群时, 它会使用 broker ID来检査新加入的 broker是否包含现有分区的副本。 如果有, 控制器就把变更通知发送给新加入的 broker和其他 broker, 新 broker上的副本开始从Leader那里复制消息。

简而言之。 Kafka使用 Zookeeper的临时节点来选举控制器,并在节点加入集群或退出集群时通知控制器。 控制器负责在节点加入或离开集群时进行分区首领选举。

从下面的两台启动日志中可以明显看出,192.168.10.7 这台服务器是控制器。

集群工作机制

复制功能是 Kafka 架构的核心。在 Kafka 的文档里,,Kafka 把自己描述成"一个分布式的、可分区的、可复制的提交日志服务"。

复制之所以这么关键, 是因为它可以在个别节点失效时仍能保证 Kafka 的可用性和持久性。

Kafka 使用主题来组织数据, 每个主题被分为若干个分区,每个分区有多个副本。那些副本被保存在 broker 上, 每个 broker 可以保存成百上千个属于不同主题和分区的副本。

replication-factor参数

创建一个erdan的主题,复制因子是2,分区数是2

./kafka-topics.sh --bootstrap-server 192.168.10.7:9092  --create --topic erdan --replication-factor 2 --partitions 2

replication-factor用来设置主题的副本数。每个主题可以有多个副本,副本位于集群中不同的 broker 上,也就是说副本的数量不能超过 broker 的数量。

在partition0 中,broker1(broker.id =0)是Leader,broker2(broker.id =1)是跟随副本。

在partition1 中,broker2(broker.id =1)是Leader,broker1(broker.id =0)是跟随副本。

每个分区都有一个首领副本。为了保证一致性,所有生产者请求和消费者请求都会经过这个副本 。

首领以外的副本都是跟随者副本。跟随者副本不处理来自客户端的请求,它们唯一一的任务就是从首领那里复制消息,保持与首领一致的状态 。 如果首领发生崩溃,其中的一个跟随者会被提升为新首领 。

auto.leader.rebalance.enable参数

是否允许定期进行 Leader 选举。

设置它的值为true表示允许Kafka定期地对一些Topic 分区进行Leader重选举,当然这个重选举不是无脑进行的,它要满足一定的条件才会发生。

比如Leader A一直表现得很好,但若auto.leader.rebalance.enable=true,那么有可能一段时间后Leader A就要被强行卸任换成Leader B。

知道换一次Leader 代价很高的,原本向A发送请求的所有客户端都要切换成向B发送请求,而且这种换Leader本质上没有任何性能收益,因此建议在生产环境中把这个参数设置成false。

集群消息生产

可靠的生产者

发送确认机制的 3 种不同确认模式。

acks=0 意味着如果生产者能够通过网络把消息发送出去,那么就认为消息已成功写入Kafka 。

acks=1 意味若首领在收到消息并把它写入到分区数据文件(不一定同步到磁盘上)时会返回确认或错误响应。

acks=all 意味着首领在返回确认或错误响应之前,会等待(min.insync.replicas)同步副本都收到悄息。

ISR(In-sync Replicas)

Kafka的数据复制是以Partition为单位的。而多个备份间的数据复制,通过Follower向Leader拉取数据完成。从一这点来讲,有点像Master-Slave方案。不同的是,Kafka既不是完全的同步复制,也不是完全的异步复制,而是基于ISR的动态复制方案。

ISR,也即In-Sync Replica。每个Partition的Leader都会维护这样一个列表,该列表中,包含了所有与之同步的Replica(包含Leader自己)。每次数据写入时,只有ISR中的所有Replica都复制完,Leader才会将其置为Commit,它才能被Consumer所消费。

这种方案,与同步复制非常接近。但不同的是,这个ISR是由Leader动态维护的。如果Follower不能紧"跟上"Leader,它将被Leader从ISR中移除,待它又重新"跟上"Leader后,会被Leader再次加入ISR中。每次改变ISR后,Leader都会将最新的ISR持久化到Zookeeper中。

至于如何判断某个Follower是否"跟上"Leader,不同版本的Kafka的策略稍微有些区别。

从0.9.0.0版本开始,replica.lag.max.messages被移除,故Leader不再考虑Follower落后的消息条数。另外,Leader不仅会判断Follower是否在replica.lag.time.max.ms时间内向其发送Fetch请求,同时还会考虑Follower是否在该时间内与之保持同步。

使用ISR方案的原因

由于Leader可移除不能及时与之同步的Follower,故与同步复制相比可避免最慢的Follower拖慢整体速度,也即ISR提高了系统可用性。

ISR中的所有Follower都包含了所有Commit过的消息,而只有Commit过的消息才会被Consumer消费,故从Consumer的角度而言,ISR中的所有Replica都始终处于同步状态,从而与异步复制方案相比提高了数据一致性。

ISR相关配置说明

Broker的min.insync.replicas参数指定了Broker所要求的ISR最小长度,默认值为1。也即极限情况下ISR可以只包含Leader。但此时如果Leader宕机,则该Partition不可用,可用性得不到保证。min.insync.replicas是kafka系统可用性和数据可靠性的平衡!

只有被ISR中所有Replica同步的消息才被Commit,但Producer发布数据时,Leader并不需要ISR中的所有Replica同步该数据才确认收到数据。Producer可以通过acks参数指定最少需要多少个Replica确认收到该消息才视为该消息发送成功。acks的默认值是1,即Leader收到该消息后立即告诉Producer收到该消息,此时如果在ISR中的消息复制完该消息前Leader宕机,那该条消息会丢失。而如果将该值设置为0,则Producer发送完数据后,立即认为该数据发送成功,不作任何等待,而实际上该数据可能发送失败,并且Producer的Retry机制将不生效。

更推荐的做法是,将acks设置为all或者-1,此时只有ISR中的所有Replica都收到该数据(也即该消息被Commit),Leader才会告诉Producer该消息发送成功,从而保证不会有未知的数据丢失。

相关推荐
金刚猿3 分钟前
简单理解下基于 Redisson 库的分布式锁机制
分布式·分布式锁·redisson
我一直在流浪26 分钟前
Kafka - 消费者程序仅消费一半分区消息的问题
分布式·kafka
张彦峰ZYF2 小时前
投资策略规划最优决策分析
分布式·算法·金融
B站计算机毕业设计超人2 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
processflow流程图4 小时前
分布式kettle调度平台v6.4.0新功能介绍
分布式
全栈开发圈4 小时前
干货分享|分布式数据科学工具 Xorbits 的使用
分布式
运维&陈同学6 小时前
【zookeeper01】消息队列与微服务之zookeeper工作原理
运维·分布式·微服务·zookeeper·云原生·架构·消息队列
时差9536 小时前
Flink Standalone集群模式安装部署
大数据·分布式·flink·部署
菠萝咕噜肉i7 小时前
超详细:Redis分布式锁
数据库·redis·分布式·缓存·分布式锁
Mephisto.java7 小时前
【大数据学习 | Spark】Spark的改变分区的算子
大数据·elasticsearch·oracle·spark·kafka·memcache