分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测

分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测

目录

    • [分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测](#分类预测 | MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测)

效果一览






基本介绍

MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测(完整程序和数据)

SSA麻雀算法同步优化特征选择结合支持向量机分类预测,优化前后对比,基于LIBSVM。

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现SSA-FS-SVM麻雀算法同步优化特征选择结合支持向量机分类预测
clike 复制代码
%%  麻雀参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数为数据集特征总数 。
%目标函数
fobj = @(x) fun(x,train_wine_labels,train_wine,test_wine_labels,test_wine); 
% 优化参数的个数 特征维度
dim = size(train_wine,2); %特征维度
% 优化参数的取值下限,[0,1],大于0.5为选择该特征,小于0.5为不选择该特征
lb = 0;
ub = 1;

%%  参数设置
pop =10; %数量
Max_iteration=50;%最大迭代次数             
%% 优化(这里主要调用函数)
[Best_score,Best_pos,curve]=SSA(pop,Max_iteration,lb,ub,dim,fobj); 
figure
plot(curve,'linewidth',1.5);
xlabel('迭代次数');
ylabel('适应度值');
title('收敛曲线');
grid on;

c = 2;  
g = 2; 
toc
% 用优化得到的特征进行训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(train_wine_labels, train_wineNew, cmd);
test_wineNew = test_wine(:,B);
%% SVM网络预测
[predict_labelTrain, accuracyTrain,~] = libsvmpredict(train_wine_labels, train_wineNew, model);
[predict_labelTest, accuracyTest,~] = libsvmpredict(test_wine_labels, test_wineNew, model);

%% 基础SVM预测结果
% 用优化得到的特征进行训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(train_wine_labels, train_wine, cmd);
%% SVM网络预测
[predict_labelTrain1, accuracyTrain1,~] = libsvmpredict(train_wine_labels, train_wine, model);
[predict_labelTest1, accuracyTest1,~] = libsvmpredict(test_wine_labels, test_wine, model);%% 结果分析

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
xchenhao14 小时前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao2 天前
SciKit-Learn 全面分析分类任务 breast_cancer 数据集
python·机器学习·分类·数据集·scikit-learn·svm
xchenhao5 天前
SciKit-Learn 全面分析 digits 手写数据集
python·机器学习·分类·数据集·scikit-learn·svm·手写
至善迎风7 天前
版本管理系统与平台(权威资料核对、深入解析、行业选型与国产平台补充)
git·gitee·gitlab·github·svm
nju_spy1 个月前
周志华院士西瓜书实战(二)MLP+SVM+贝叶斯分类器+决策树+集成学习
决策树·随机森林·机器学习·adaboost·svm·mlp·南京大学
星期天要睡觉1 个月前
机器学习——支持向量机(SVM)
算法·机器学习·支持向量机·svm
伊织code2 个月前
OpenCV 官翻5 - 机器学习
人工智能·opencv·机器学习·聚类·svm·knn·k-means
kngines2 个月前
【字节跳动】数据挖掘面试题0006:SVM(支持向量机)详细原理
算法·支持向量机·数据挖掘·svm
Code哈哈笑4 个月前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm
ALISHENGYA8 个月前
用Python实现SVM搭建金融反诈模型(含调试运行)
算法·机器学习·支持向量机·svm