使用DeepSpeed/P-Tuning v2对ChatGLM-6B进行微调

link
之前尝试了基于ChatGLM-6B使用LoRA进行参数高效微调 ,本文给大家分享使用DeepSpeed和P-Tuning v2对ChatGLM-6B进行微调,相关代码放置在GitHub上面:llm-action

ChatGLM-6B简介

ChatGLM-6B相关的简介请查看之前的文章,这里不再赘述。

P-Tuning v2简介

P-Tuning是一种较新的模型微调方法,它采用了参数剪枝的技术,可以将微调的参数量减少到原来的0.1%。具体来说,P-Tuning v2是基于P-Tuning v1的升级版,主要的改进在于采用了更加高效的剪枝方法,可以进一步减少模型微调的参数量。

P-Tuning v2的原理是通过对已训练好的大型语言模型进行参数剪枝,得到一个更加小巧、效率更高的轻量级模型。具体地,P-Tuning v2首先使用一种自适应的剪枝策略,对大型语言模型中的参数进行裁剪,去除其中不必要的冗余参数。然后,对于被剪枝的参数,P-Tuning v2使用了一种特殊的压缩方法,能够更加有效地压缩参数大小,并显著减少模型微调的总参数量。

总的来说,P-Tuning v2的核心思想是让模型变得更加轻便、更加高效,同时尽可能地保持模型的性能不受影响。这不仅可以加快模型的训练和推理速度,还可以减少模型在使用过程中的内存和计算资源消耗,让模型更适用于各种实际应用场景中。

环境搭建

基础环境配置如下:

  • 操作系统: Ubuntu 18.04
  • CPUs: 单个节点具有 1TB 内存的 Intel CPU,物理CPU个数为64,每颗CPU核数为16
  • GPUs: 8 卡 A800 80GB GPUs
  • Python: 3.10 (需要先升级OpenSSL到1.1.1t版本(点击下载OpenSSL ),然后再编译安装Python),点击下载Python
  • NVIDIA驱动程序版本: 515.65.01,根据不同型号选择不同的驱动程序,点击下载
  • CUDA工具包: 11.7,点击下载
  • NCCL: nccl_2.14.3-1+cuda11.7,点击下载
  • cuDNN: 8.8.1.3_cuda11,点击下载

上面的NVIDIA驱动、CUDA、Python等工具的安装就不一一赘述了。

创建虚拟环境并激活虚拟环境chatglm-ptuningv2-venv-py310-cu117:

text 复制代码
cd /home/guodong.li/virtual-venv
virtualenv -p /usr/bin/python3.10 chatglm-ptuningv2-venv-py310-cu117
source /home/guodong.li/virtual-venv/chatglm-ptuningv2-venv-py310-cu117/bin/activate

离线安装PyTorch,**点击下载**对应cuda版本的torch和torchvision即可。

text 复制代码
pip install torch-1.13.1+cu117-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.14.1+cu117-cp310-cp310-linux_x86_64.whl

安装其他依赖库。

text 复制代码
pip install -r requirements.txt

requirements.txt文件内容如下:

text 复制代码
protobuf
transformers==4.28.0
cpm_kernels
gradio
mdtex2html
sentencepiece
rouge_chinese
nltk
jieba
datasets
deepspeed
accelerate

注意
官方文档的transformers版本为4.27.1,chatglm加载模型时会调用transformers/dynamic_module_utils.py文件下的get_class_in_module方法,而该方法在并发情况下会存在找不到文件的问题。将transformers版本升级到4.28.0可以规避此问题。

数据准备

下面以 ADGEN (广告生成) 数据集为例来介绍微调的具体使用。

ADGEN 数据集为根据输入(content)生成一段广告词(summary),具体格式如下所示:

text 复制代码
{
    "content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
    "summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}

请从官网下载 ADGEN 数据集,同通过此**链接** 下载,并将其解压到 AdvertiseGen 目录。

text 复制代码
tar -zxvf AdvertiseGen.tar.gz

查看数据集大小:

text 复制代码
> wc -l AdvertiseGen/*
> 1070 AdvertiseGen/dev.json
> 114599 AdvertiseGen/train.json
> 115669 total

使用DeepSpeed DP+Zero对ChatGLM-6B进行全参数微调

首先,我们使用DeepSpeed对ChatGLM-6B进行全参数微调。

首先,下载源代码,为确保代码的一致性切换到对应的commitid

text 复制代码
git clone https://github.com/THUDM/ChatGLM-6B.git
cd ChatGLM-6B
git checkout 8633db1
cd ptuning

修改ds_train_finetune.sh脚本使用DeepSpeed进行全参数微调。

text 复制代码
LR=1e-4

MASTER_PORT=$(shuf -n 1 -i 10000-65535)

deepspeed --num_gpus=8 --master_port M A S T E R P O R T m a i n . p y − − d e e p s p e e d d e e p s p e e d . j s o n − − d o t r a i n − − t r a i n f i l e / d a t a / n f s / l l m / d a t a / A d v e r t i s e G e n / t r a i n . j s o n − − t e s t f i l e / d a t a / n f s / l l m / d a t a / A d v e r t i s e G e n / d e v . j s o n − − p r o m p t c o l u m n c o n t e n t − − r e s p o n s e c o l u m n s u m m a r y − − o v e r w r i t e c a c h e − − m o d e l n a m e o r p a t h / d a t a / n f s / l l m / m o d e l / c h a t g l m − 6 b − − o u t p u t d i r / h o m e / g u o d o n g . l i / o u t p u t / a d g e n − c h a t g l m − 6 b − f t − MASTER_PORT main.py \ --deepspeed deepspeed.json \ --do_train \ --train_file /data/nfs/llm/data/AdvertiseGen/train.json \ --test_file /data/nfs/llm/data/AdvertiseGen/dev.json \ --prompt_column content \ --response_column summary \ --overwrite_cache \ --model_name_or_path /data/nfs/llm/model/chatglm-6b \ --output_dir /home/guodong.li/output/adgen-chatglm-6b-ft- MASTERPORTmain.py −−deepspeeddeepspeed.json −−dotrain −−trainfile/data/nfs/llm/data/AdvertiseGen/train.json −−testfile/data/nfs/llm/data/AdvertiseGen/dev.json −−promptcolumncontent −−responsecolumnsummary −−overwritecache −−modelnameorpath/data/nfs/llm/model/chatglm−6b −−outputdir/home/guodong.li/output/adgen−chatglm−6b−ft−LR

--overwrite_output_dir

--max_source_length 64

--max_target_length 64

--per_device_train_batch_size 24

--per_device_eval_batch_size 1

--gradient_accumulation_steps 2

--predict_with_generate

--num_train_epochs 2

--logging_steps 10

--save_steps 300

--learning_rate $LR

--fp16

运行过程:

text 复制代码
> sh ds_train_finetune.sh

[2023-04-14 18:01:33,206] [WARNING] [runner.py:190:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.

[2023-04-14 18:01:33,417] [INFO] [runner.py:540:main] cmd = /home/guodong.li/virtual-venv/chatglm-ptuningv2-venv-py310-cu117/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMSwgMiwgMywgNCwgNSwgNiwgN119 --master_addr=127.0.0.1 --master_port=44148 --enable_each_rank_log=None main.py --deepspeed deepspeed.json --do_train --train_file /data/nfs/llm/data/AdvertiseGen/train.json --test_file /data/nfs/llm/data/AdvertiseGen/dev.json --prompt_column content --response_column summary --overwrite_cache --model_name_or_path /data/nfs/llm/model/chatglm-6b --output_dir /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4 --overwrite_output_dir --max_source_length 64 --max_target_length 64 --per_device_train_batch_size 24 --per_device_eval_batch_size 1 --gradient_accumulation_steps 2 --predict_with_generate --num_train_epochs 2 --logging_steps 10 --save_steps 300 --learning_rate 1e-4 --fp16

[2023-04-14 18:01:35,945] [INFO] [launch.py:222:main] 0 NCCL_SOCKET_IFNAME=bond0

[2023-04-14 18:01:35,945] [INFO] [launch.py:222:main] 0 NCCL_IB_DISABLE=1

[2023-04-14 18:01:35,945] [INFO] [launch.py:229:main] WORLD INFO DICT: {'localhost': [0, 1, 2, 3, 4, 5, 6, 7]}

[2023-04-14 18:01:35,945] [INFO] [launch.py:235:main] nnodes=1, num_local_procs=8, node_rank=0

[2023-04-14 18:01:35,945] [INFO] [launch.py:246:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3, 4, 5, 6, 7]})

[2023-04-14 18:01:35,945] [INFO] [launch.py:247:main] dist_world_size=8

[2023-04-14 18:01:35,945] [INFO] [launch.py:249:main] Setting CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7

[2023-04-14 18:01:40,133] [INFO] [comm.py:586:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl

04/14/2023 18:01:41 - WARNING - main - Process rank: 2, device: cuda:2, n_gpu: 1distributed training: True, 16-bits training: True

...

04/14/2023 18:01:41 - WARNING - main - Process rank: 5, device: cuda:5, n_gpu: 1distributed training: True, 16-bits training: True

04/14/2023 18:01:41 - INFO - main - Training/evaluation parameters Seq2SeqTrainingArguments(

_n_gpu=1,

adafactor=False,

adam_beta1=0.9,

adam_beta2=0.999,

adam_epsilon=1e-08,

auto_find_batch_size=False,

bf16=False,

bf16_full_eval=False,

data_seed=None,

dataloader_drop_last=False,

dataloader_num_workers=0,

dataloader_pin_memory=True,

ddp_bucket_cap_mb=None,

ddp_find_unused_parameters=None,

ddp_timeout=1800,

debug=[],

deepspeed=deepspeed.json,

disable_tqdm=False,

do_eval=False,

do_predict=False,

do_train=True,

eval_accumulation_steps=None,

eval_delay=0,

eval_steps=None,

evaluation_strategy=no,

fp16=True,

fp16_backend=auto,

fp16_full_eval=False,

fp16_opt_level=O1,

fsdp=[],

fsdp_config={'fsdp_min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},

fsdp_min_num_params=0,

fsdp_transformer_layer_cls_to_wrap=None,

full_determinism=False,

generation_config=None,

generation_max_length=None,

generation_num_beams=None,

gradient_accumulation_steps=2,

gradient_checkpointing=False,

greater_is_better=None,

group_by_length=False,

half_precision_backend=auto,

hub_model_id=None,

hub_private_repo=False,

hub_strategy=every_save,

hub_token=<HUB_TOKEN>,

ignore_data_skip=False,

include_inputs_for_metrics=False,

jit_mode_eval=False,

label_names=None,

label_smoothing_factor=0.0,

learning_rate=0.0001,

length_column_name=length,

load_best_model_at_end=False,

local_rank=0,

log_level=passive,

log_level_replica=warning,

log_on_each_node=True,

logging_dir=/home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/runs/Apr14_18-01-40_ai-app-2-46,

logging_first_step=False,

logging_nan_inf_filter=True,

logging_steps=10,

logging_strategy=steps,

lr_scheduler_type=linear,

max_grad_norm=1.0,

max_steps=-1,

metric_for_best_model=None,

mp_parameters=,

no_cuda=False,

num_train_epochs=2.0,

optim=adamw_hf,

optim_args=None,

output_dir=/home/guodong.li/output/adgen-chatglm-6b-ft-1e-4,

overwrite_output_dir=True,

past_index=-1,

per_device_eval_batch_size=1,

per_device_train_batch_size=24,

predict_with_generate=True,

prediction_loss_only=False,

push_to_hub=False,

push_to_hub_model_id=None,

push_to_hub_organization=None,

push_to_hub_token=<PUSH_TO_HUB_TOKEN>,

ray_scope=last,

remove_unused_columns=True,

report_to=[],

resume_from_checkpoint=None,

run_name=/home/guodong.li/output/adgen-chatglm-6b-ft-1e-4,

save_on_each_node=False,

save_safetensors=False,

save_steps=300,

save_strategy=steps,

save_total_limit=None,

seed=42,

sharded_ddp=[],

skip_memory_metrics=True,

sortish_sampler=False,

tf32=None,

torch_compile=False,

torch_compile_backend=None,

torch_compile_mode=None,

torchdynamo=None,

tpu_metrics_debug=False,

tpu_num_cores=None,

use_ipex=False,

use_legacy_prediction_loop=False,

use_mps_device=False,

warmup_ratio=0.0,

warmup_steps=0,

weight_decay=0.0,

xpu_backend=None,

)

04/14/2023 18:03:01 - WARNING - datasets.builder - Found cached dataset json (/home/guodong.li/.cache/huggingface/datasets/json/default-386448e4f2983a9a/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e)

100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 184.03it/s]

04/14/2023 18:03:01 - WARNING - datasets.builder - Found cached dataset json (/home/guodong.li/.cache/huggingface/datasets/json/default-386448e4f2983a9a/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e)

[WARNING|configuration_auto.py:925] 2023-04-14 18:03:01,664 >> Explicitly passing a `revision` is encouraged when loading a configuration with custom code to ensure no malicious code has been contributed in a newer revision.

04/14/2023 18:03:01 - WARNING - datasets.builder - Found cached dataset json (/home/guodong.li/.cache/huggingface/datasets/json/default-386448e4f2983a9a/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e)

0%|                                                                                                                                                                                   | 0/2 [00:00<?, ?it/s][WARNING|tokenization_auto.py:675] 2023-04-14 18:03:01,675 >> Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.

100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 240.57it/s]

100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 197.48it/s]

[INFO|configuration_utils.py:666] 2023-04-14 18:03:01,678 >> loading configuration file /data/nfs/llm/model/chatglm-6b/config.json

[WARNING|configuration_auto.py:925] 2023-04-14 18:03:01,678 >> Explicitly passing a `revision` is encouraged when loading a configuration with custom code to ensure no malicious code has been contributed in a newer revision.

[WARNING|configuration_auto.py:925] 2023-04-14 18:03:01,679 >> Explicitly passing a `revision` is encouraged when loading a configuration with custom code to ensure no malicious code has been contributed in a newer revision.

[INFO|configuration_utils.py:666] 2023-04-14 18:03:01,685 >> loading configuration file /data/nfs/llm/model/chatglm-6b/config.json

04/14/2023 18:03:01 - WARNING - datasets.builder - Found cached dataset json (/home/guodong.li/.cache/huggingface/datasets/json/default-386448e4f2983a9a/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e)

[INFO|configuration_utils.py:720] 2023-04-14 18:03:01,687 >> Model config ChatGLMConfig {

"_name_or_path": "/data/nfs/llm/model/chatglm-6b",

"architectures": [

"ChatGLMModel"

],

"auto_map": {

"AutoConfig": "configuration_chatglm.ChatGLMConfig",

"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",

"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"

},

"bos_token_id": 130004,

"eos_token_id": 130005,

"gmask_token_id": 130001,

"hidden_size": 4096,

"inner_hidden_size": 16384,

"layernorm_epsilon": 1e-05,

"mask_token_id": 130000,

"max_sequence_length": 2048,

"model_type": "chatglm",

"num_attention_heads": 32,

"num_layers": 28,

"pad_token_id": 3,

"position_encoding_2d": true,

"pre_seq_len": null,

"prefix_projection": false,

"quantization_bit": 0,

"torch_dtype": "float16",

"transformers_version": "4.28.0",

"use_cache": true,

"vocab_size": 130528

}

0%| | 0/2 [00:00<?, ?it/s][WARNING|tokenization_auto.py:675] 2023-04-14 18:03:01,688 >> Explicitly passing a revision is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.

[WARNING|tokenization_auto.py:675] 2023-04-14 18:03:01,689 >> Explicitly passing a revision is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.

[INFO|tokenization_utils_base.py:1807] 2023-04-14 18:03:01,694 >> loading file ice_text.model

[INFO|tokenization_utils_base.py:1807] 2023-04-14 18:03:01,694 >> loading file added_tokens.json

[INFO|tokenization_utils_base.py:1807] 2023-04-14 18:03:01,694 >> loading file special_tokens_map.json

[INFO|tokenization_utils_base.py:1807] 2023-04-14 18:03:01,694 >> loading file tokenizer_config.json

100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 285.37it/s]

[INFO|modeling_utils.py:2531] 2023-04-14 18:03:01,992 >> loading weights file /data/nfs/llm/model/chatglm-6b/pytorch_model.bin.index.json

[INFO|configuration_utils.py:575] 2023-04-14 18:03:01,993 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

Loading checkpoint shards: 0%| | 0/8 [00:00<?, ?it/s][WARNING|auto_factory.py:456] 2023-04-14 18:03:02,077 >> Explicitly passing a revision is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.

[WARNING|auto_factory.py:456] 2023-04-14 18:03:02,109 >> Explicitly passing a revision is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.

Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:13<00:00, 1.70s/it]

[INFO|modeling_utils.py:3190] 2023-04-14 18:03:15,622 >> All model checkpoint weights were used when initializing ChatGLMForConditionalGeneration.

[INFO|modeling_utils.py:3198] 2023-04-14 18:03:15,622 >> All the weights of ChatGLMForConditionalGeneration were initialized from the model checkpoint at /data/nfs/llm/model/chatglm-6b.

If your task is similar to the task the model of the checkpoint was trained on, you can already use ChatGLMForConditionalGeneration for predictions without further training.

Loading checkpoint shards: 25%|████████████████████████████████████ | 2/8 [00:13<00:40, 6.73s/it][INFO|modeling_utils.py:2839] 2023-04-14 18:03:15,703 >> Generation config file not found, using a generation config created from the model config.

...

Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:34<00:00, 4.32s/it]

input_ids [5, 65421, 61, 67329, 32, 98339, 61, 72043, 32, 65347, 61, 70872, 32, 69768, 61, 68944, 32, 67329, 64103, 61, 96914, 130001, 130004, 5, 87052, 96914, 81471, 64562, 65759, 64493, 64988, 6, 65840, 65388, 74531, 63825, 75786, 64009, 63823, 65626, 63882, 64619, 65388, 6, 64480, 65604, 85646, 110945, 10, 64089, 65966, 87052, 67329, 65544, 6, 71964, 70533, 64417, 63862, 89978, 63991, 63823, 77284, 88473, 64219, 63848, 112012, 6, 71231, 65099, 71252, 66800, 85768, 64566, 64338, 100323, 75469, 63823, 117317, 64218, 64257, 64051, 74197, 6, 63893, 130005, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

inputs 类型#裤版型#宽松 风格#性感图案#线条 裤型#阔腿裤 宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还

...

label_ids [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 130004, 5, 87052, 96914, 81471, 64562, 65759, 64493, 64988, 6, 65840, 65388, 74531, 63825, 75786, 64009, 63823, 65626, 63882, 64619, 65388, 6, 64480, 65604, 85646, 110945, 10, 64089, 65966, 87052, 67329, 65544, 6, 71964, 70533, 64417, 63862, 89978, 63991, 63823, 77284, 88473, 64219, 63848, 112012, 6, 71231, 65099, 71252, 66800, 85768, 64566, 64338, 100323, 75469, 63823, 117317, 64218, 64257, 64051, 74197, 6, 63893, 130005, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]

labels 宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还

[2023-04-14 18:06:30,469] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False

[2023-04-14 18:06:30,470] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the client Optimizer

[2023-04-14 18:06:30,470] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer

[2023-04-14 18:06:30,483] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = AdamW

[2023-04-14 18:06:30,484] [INFO] [utils.py:51:is_zero_supported_optimizer] Checking ZeRO support for optimizer=AdamW type=<class 'transformers.optimization.AdamW'>

[2023-04-14 18:06:30,484] [WARNING] [engine.py:1118:_do_optimizer_sanity_check] **** You are using ZeRO with an untested optimizer, proceed with caution *****

[2023-04-14 18:06:30,484] [INFO] [logging.py:96:log_dist] [Rank 0] Creating torch.float16 ZeRO stage 2 optimizer

[2023-04-14 18:06:30,484] [INFO] [stage_1_and_2.py:133:init ] Reduce bucket size 500000000

[2023-04-14 18:06:30,484] [INFO] [stage_1_and_2.py:134:init ] Allgather bucket size 500000000

[2023-04-14 18:06:30,484] [INFO] [stage_1_and_2.py:135:init ] CPU Offload: False

[2023-04-14 18:06:30,484] [INFO] [stage_1_and_2.py:136:init ] Round robin gradient partitioning: False

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

Emitting ninja build file /home/guodong.li/.cache/torch_extensions/py310_cu117/utils/build.ninja...

Building extension module utils...

Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

ninja: no work to do.

Loading extension module utils...

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

Time to load utils op: 0.10171675682067871 seconds

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

Emitting ninja build file /home/guodong.li/.cache/torch_extensions/py310_cu117/utils/build.ninja...

Building extension module utils...

Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)

ninja: no work to do.

Loading extension module utils...

Time to load utils op: 0.18768668174743652 seconds

...

Loading extension module utils...

Time to load utils op: 0.3021426200866699 seconds

Rank: 2 partition count [8, 8] and sizes[(771473408, False), (187392, False)]

...

Rank: 4 partition count [8, 8] and sizes[(771473408, False), (187392, False)]

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

No modifications detected for re-loaded extension module utils, skipping build step...

Loading extension module utils...

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

Time to load utils op: 0.0005774497985839844 seconds

...

No modifications detected for re-loaded extension module utils, skipping build step...

Loading extension module utils...

Time to load utils op: 0.0011382102966308594 seconds

[2023-04-14 18:06:48,321] [INFO] [utils.py:785:see_memory_usage] Before initializing optimizer states

[2023-04-14 18:06:48,321] [INFO] [utils.py:786:see_memory_usage] MA 14.37 GB Max_MA 14.37 GB CA 14.39 GB Max_CA 14 GB

[2023-04-14 18:06:48,322] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 50.56 GB, percent = 5.0%

04/14/2023 18:06:48 - WARNING - transformers_modules.chatglm-6b.modeling_chatglm - use_cache=True is incompatible with gradient checkpointing. Setting use_cache=False...

...

04/14/2023 18:06:48 - WARNING - transformers_modules.chatglm-6b.modeling_chatglm - use_cache=True is incompatible with gradient checkpointing. Setting use_cache=False...

[2023-04-14 18:06:48,431] [INFO] [utils.py:785:see_memory_usage] After initializing optimizer states

[2023-04-14 18:06:48,434] [INFO] [utils.py:786:see_memory_usage] MA 20.12 GB Max_MA 25.87 GB CA 25.9 GB Max_CA 26 GB

[2023-04-14 18:06:48,435] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 50.84 GB, percent = 5.0%

[2023-04-14 18:06:48,435] [INFO] [stage_1_and_2.py:489:init ] optimizer state initialized

[2023-04-14 18:06:48,512] [INFO] [utils.py:785:see_memory_usage] After initializing ZeRO optimizer

[2023-04-14 18:06:48,513] [INFO] [utils.py:786:see_memory_usage] MA 20.12 GB Max_MA 20.12 GB CA 25.9 GB Max_CA 26 GB

[2023-04-14 18:06:48,513] [INFO] [utils.py:793:see_memory_usage] CPU Virtual Memory: used = 51.29 GB, percent = 5.1%

[2023-04-14 18:06:48,515] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Final Optimizer = AdamW

[2023-04-14 18:06:48,515] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed using client LR scheduler

[2023-04-14 18:06:48,515] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = <torch.optim.lr_scheduler.LambdaLR object at 0x7f172c367a30>

[2023-04-14 18:06:48,515] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0001, 0.0001], mom=[(0.9, 0.999), (0.9, 0.999)]

[2023-04-14 18:06:48,515] [INFO] [config.py:953:print] DeepSpeedEngine configuration:

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] activation_checkpointing_config {

"partition_activations": false,

"contiguous_memory_optimization": false,

"cpu_checkpointing": false,

"number_checkpoints": null,

"synchronize_checkpoint_boundary": false,

"profile": false

}

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] aio_config ... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] amp_enabled ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] amp_params ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] autotuning_config ... {

"enabled": false,

"start_step": null,

"end_step": null,

"metric_path": null,

"arg_mappings": null,

"metric": "throughput",

"model_info": null,

"results_dir": "autotuning_results",

"exps_dir": "autotuning_exps",

"overwrite": true,

"fast": true,

"start_profile_step": 3,

"end_profile_step": 5,

"tuner_type": "gridsearch",

"tuner_early_stopping": 5,

"tuner_num_trials": 50,

"model_info_path": null,

"mp_size": 1,

"max_train_batch_size": null,

"min_train_batch_size": 1,

"max_train_micro_batch_size_per_gpu": 1.024000e+03,

"min_train_micro_batch_size_per_gpu": 1,

"num_tuning_micro_batch_sizes": 3

}

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] bfloat16_enabled ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] checkpoint_parallel_write_pipeline False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] checkpoint_tag_validation_enabled True

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] checkpoint_tag_validation_fail False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] comms_config ... <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7f172843d6f0>

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] communication_data_type ... None

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] compression_config ... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] curriculum_enabled_legacy ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] curriculum_params_legacy ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] data_efficiency_config ... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] data_efficiency_enabled ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] dataloader_drop_last ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] disable_allgather ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] dump_state ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] dynamic_loss_scale_args ... {'init_scale': 65536, 'scale_window': 1000, 'delayed_shift': 2, 'min_scale': 1}

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] eigenvalue_enabled ... False

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] eigenvalue_gas_boundary_resolution 1

[2023-04-14 18:06:48,516] [INFO] [config.py:957:print] eigenvalue_layer_name ... bert.encoder.layer

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] eigenvalue_layer_num ... 0

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] eigenvalue_max_iter ... 100

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] eigenvalue_stability ... 1e-06

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] eigenvalue_tol ... 0.01

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] eigenvalue_verbose ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] elasticity_enabled ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] flops_profiler_config ... {

"enabled": false,

"profile_step": 1,

"module_depth": -1,

"top_modules": 1,

"detailed": true,

"output_file": null

}

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] fp16_auto_cast ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] fp16_enabled ... True

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] fp16_master_weights_and_gradients False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] global_rank ... 0

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] grad_accum_dtype ... None

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] gradient_accumulation_steps ... 1

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] gradient_clipping ... 0.0

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] gradient_predivide_factor ... 1.0

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] hybrid_engine ... enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] initial_dynamic_scale ... 65536

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] load_universal_checkpoint ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] loss_scale ... 0

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] memory_breakdown ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] monitor_config ... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] nebula_config ... {

"enabled": false,

"persistent_storage_path": null,

"persistent_time_interval": 100,

"num_of_version_in_retention": 2,

"enable_nebula_load": true,

"load_path": null

}

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] optimizer_legacy_fusion ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] optimizer_name ... None

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] optimizer_params ... None

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] pipeline ... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0}

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] pld_enabled ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] pld_params ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] prescale_gradients ... False

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] scheduler_name ... None

[2023-04-14 18:06:48,517] [INFO] [config.py:957:print] scheduler_params ... None

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] sparse_attention ... None

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] sparse_gradients_enabled ... False

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] steps_per_print ... 10

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] train_batch_size ... 192

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] train_micro_batch_size_per_gpu 24

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] use_node_local_storage ... False

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] wall_clock_breakdown ... False

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] world_size ... 8

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] zero_allow_untested_optimizer True

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] zero_config ... stage=2 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500000000 allgather_partitions=True allgather_bucket_size=500000000 overlap_comm=False load_from_fp32_weights=True elastic_checkpoint=False offload_param=None offload_optimizer=None sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=50,000,000 param_persistence_threshold=100,000 model_persistence_threshold=sys.maxsize max_live_parameters=1,000,000,000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False memory_efficient_linear=True

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] zero_enabled ... True

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] zero_force_ds_cpu_optimizer ... True

[2023-04-14 18:06:48,518] [INFO] [config.py:957:print] zero_optimization_stage ... 2

[2023-04-14 18:06:48,518] [INFO] [config.py:943:print_user_config] json = {

"train_micro_batch_size_per_gpu": 24,

"zero_allow_untested_optimizer": true,

"fp16": {

"enabled": true,

"loss_scale": 0,

"initial_scale_power": 16,

"loss_scale_window": 1000,

"hysteresis": 2,

"min_loss_scale": 1

},

"zero_optimization": {

"stage": 2,

"allgather_partitions": true,

"allgather_bucket_size": 5.000000e+08,

"overlap_comm": false,

"reduce_scatter": true,

"reduce_bucket_size": 5.000000e+08,

"contiguous_gradients": true

}

}

Using /home/guodong.li/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...

No modifications detected for re-loaded extension module utils, skipping build step...

Loading extension module utils...

Time to load utils op: 0.00031948089599609375 seconds

0%| | 0/596 [00:00<?, ?it/s]04/14/2023 18:06:48 - WARNING - transformers_modules.chatglm-6b.modeling_chatglm - use_cache=True is incompatible with gradient checkpointing. Setting use_cache=False...

[2023-04-14 18:06:53,718] [INFO] [loss_scaler.py:188:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 65536, but hysteresis is 2. Reducing hysteresis to 1

[2023-04-14 18:06:55,883] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 65536, reducing to 32768

0%|▎ | 1/596 [00:07<1:13:02, 7.37s/it][2023-04-14 18:06:57,948] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 32768, reducing to 16384

[2023-04-14 18:07:00,007] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 16384, reducing to 8192

0%|▌ | 2/596 [00:11<54:01, 5.46s/it][2023-04-14 18:07:06,332] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 8192, reducing to 4096

1%|▊ | 3/596 [00:17<57:51, 5.85s/it][2023-04-14 18:07:08,383] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 4096, reducing to 2048

1%|█▏ | 4/596 [00:24<59:20, 6.01s/it][2023-04-14 18:07:18,876] [INFO] [loss_scaler.py:181:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 2048, reducing to 1024

[2023-04-14 18:07:18,876] [INFO] [logging.py:96:log_dist] [Rank 0] step=10, skipped=7, lr=[9.949664429530202e-05, 9.949664429530202e-05], mom=[(0.9, 0.999), (0.9, 0.999)]

[2023-04-14 18:07:18,877] [INFO] [timer.py:199:stop] epoch=0/micro_step=10/global_step=10, RunningAvgSamplesPerSec=66.98818896434254, CurrSamplesPerSec=93.79590019766518, MemAllocated=21.59GB, MaxMemAllocated=28.8GB

1%|█▍ | 5/596 [00:30<1:00:11, 6.11s/it]

...

[2023-04-14 18:47:55,207] [INFO] [logging.py:96:log_dist] [Rank 0] step=590, skipped=12, lr=[3.02013422818792e-06, 3.02013422818792e-06], mom=[(0.9, 0.999), (0.9, 0.999)]

[2023-04-14 18:47:57,392] [INFO] [timer.py:199:stop] epoch=0/micro_step=590/global_step=590, RunningAvgSamplesPerSec=45.931193758598916, CurrSamplesPerSec=45.63412532914195, MemAllocated=21.59GB, MaxMemAllocated=28.8GB

50%|███████████████████████████████████████████████████████████████████████████████████▊ | 299/596 [41:42<41:37, 8.41s/it][2023-04-14 18:48:37,273] [INFO] [logging.py:96:log_dist] [Rank 0] step=600, skipped=12, lr=[1.3422818791946309e-06, 1.3422818791946309e-06], mom=[(0.9, 0.999), (0.9, 0.999)]

[2023-04-14 18:48:39,453] [INFO] [timer.py:199:stop] epoch=0/micro_step=600/global_step=600, RunningAvgSamplesPerSec=45.92850276413307, CurrSamplesPerSec=45.66031263997641, MemAllocated=21.59GB, MaxMemAllocated=28.8GB

{'loss': 13.3487, 'learning_rate': 1.3422818791946309e-06, 'epoch': 1.01}

50%|████████████████████████████████████████████████████████████████████████████████████ | 300/596 [41:50<41:30, 8.41s/it]Saving the whole model

[INFO|configuration_utils.py:457] 2023-04-14 18:48:39,458 >> Configuration saved in /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/config.json

[INFO|configuration_utils.py:362] 2023-04-14 18:48:39,459 >> Configuration saved in /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/generation_config.json

[INFO|modeling_utils.py:1855] 2023-04-14 18:49:03,951 >> The model is bigger than the maximum size per checkpoint (10GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/pytorch_model.bin.index.json.

[INFO|tokenization_utils_base.py:2171] 2023-04-14 18:49:03,953 >> tokenizer config file saved in /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/tokenizer_config.json

[INFO|tokenization_utils_base.py:2178] 2023-04-14 18:49:03,953 >> Special tokens file saved in /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/special_tokens_map.json

[2023-04-14 18:49:03,983] [INFO] [logging.py:96:log_dist] [Rank 0] [Torch] Checkpoint global_step600 is about to be saved!

[2023-04-14 18:49:03,988] [INFO] [logging.py:96:log_dist] [Rank 0] Saving model checkpoint: /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/global_step600/mp_rank_00_model_states.pt

[2023-04-14 18:49:03,988] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/global_step600/mp_rank_00_model_states.pt...

[2023-04-14 18:49:15,934] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/global_step600/mp_rank_00_model_states.pt.

[2023-04-14 18:49:15,937] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/global_step600/zero_pp_rank_0_mp_rank_00_optim_states.pt...

[2023-04-14 18:49:28,049] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/global_step600/zero_pp_rank_0_mp_rank_00_optim_states.pt.

[2023-04-14 18:49:28,049] [INFO] [engine.py:3125:_save_zero_checkpoint] zero checkpoint saved /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4/checkpoint-300/global_step600/zero_pp_rank_0_mp_rank_00_optim_states.pt

[2023-04-14 18:49:28,049] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step600 is ready now!

51%|████████████████████████████████████████████████████████████████████████████████████▏ | 304/596 [43:14<1:05:51, 13.53s/it][2023-04-14 18:50:09,137] [INFO] [logging.py:96:log_dist] [Rank 0] step=610, skipped=12, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]

[2023-04-14 18:50:11,316] [INFO] [timer.py:199:stop] epoch=0/micro_step=610/global_step=610, RunningAvgSamplesPerSec=45.926876625767875, CurrSamplesPerSec=45.66709917655267, MemAllocated=21.59GB, MaxMemAllocated=28.8GB

52%|██████████████████████████████████████████████████████████████████████████████████████▌ | 309/596 [43:56<44:16, 9.26s/it][2023-04-14 18:50:51,114] [INFO] [logging.py:96:log_dist] [Rank 0] step=620, skipped=12, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]

[2023-04-14 18:50:53,302] [INFO] [timer.py:199:stop] epoch=0/micro_step=620/global_step=620, RunningAvgSamplesPerSec=45.92462533252217, CurrSamplesPerSec=45.55552426651123, MemAllocated=21.59GB, MaxMemAllocated=28.8GB

{'loss': 13.3202, 'learning_rate': 0.0, 'epoch': 1.04}

...

99%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 589/596 [1:23:07<00:58, 8.41s/it][2023-04-14 19:30:02,654] [INFO] [logging.py:96:log_dist] [Rank 0] step=1180, skipped=12, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]

[2023-04-14 19:30:04,820] [INFO] [timer.py:199:stop] epoch=0/micro_step=1180/global_step=1180, RunningAvgSamplesPerSec=45.85904109663022, CurrSamplesPerSec=45.73521852038509, MemAllocated=21.59GB, MaxMemAllocated=28.8GB

{'loss': 13.3537, 'learning_rate': 0.0, 'epoch': 1.98}

100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▍| 594/596 [1:23:49<00:16, 8.41s/it][2023-04-14 19:30:44,847] [INFO] [logging.py:96:log_dist] [Rank 0] step=1190, skipped=12, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]

[2023-04-14 19:30:47,022] [INFO] [timer.py:199:stop] epoch=0/micro_step=1190/global_step=1190, RunningAvgSamplesPerSec=45.856487437478386, CurrSamplesPerSec=45.579988341622055, MemAllocated=21.59GB, MaxMemAllocated=28.8GB

{'train_runtime': 5046.8863, 'train_samples_per_second': 45.414, 'train_steps_per_second': 0.118, 'train_loss': 13.905431555421561, 'epoch': 2.0}

100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 596/596 [1:24:06<00:00, 8.47s/it]

***** train metrics *****

epoch = 2.0

train_loss = 13.9054

train_runtime = 1:24:06.88

train_samples = 114599

train_samples_per_second = 45.414

train_steps_per_second = 0.118

[2023-04-14 19:30:58,560] [INFO] [launch.py:460:main] Process 35198 exits successfully.

[2023-04-14 19:30:58,561] [INFO] [launch.py:460:main] Process 35192 exits successfully.

[2023-04-14 19:30:58,561] [INFO] [launch.py:460:main] Process 35193 exits successfully.

[2023-04-14 19:30:58,561] [INFO] [launch.py:460:main] Process 35195 exits successfully.

[2023-04-14 19:30:58,561] [INFO] [launch.py:460:main] Process 35191 exits successfully.

[2023-04-14 19:30:59,562] [INFO] [launch.py:460:main] Process 35194 exits successfully.

[2023-04-14 19:30:59,563] [INFO] [launch.py:460:main] Process 35197 exits successfully.

[2023-04-14 19:31:00,564] [INFO] [launch.py:460:main] Process 35196 exits successfully.

GPU显存占用:

text 复制代码
Fri Apr 14 18:27:45 2023

±----------------------------------------------------------------------------+

| NVIDIA-SMI 515.105.01   Driver Version: 515.105.01   CUDA Version: 11.7     |

|-------------------------------±---------------------±---------------------+

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |

|                               |                      |               MIG M. |

|=++==============|

|   0  NVIDIA A800 80G...  Off  | 00000000:34:00.0 Off |                    0 |

| N/A   59C    P0    92W / 300W |  36539MiB / 81920MiB |    100%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

|   1  NVIDIA A800 80G...  Off  | 00000000:35:00.0 Off |                    0 |

| N/A   61C    P0    96W / 300W |  38395MiB / 81920MiB |    100%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

|   2  NVIDIA A800 80G...  Off  | 00000000:36:00.0 Off |                    0 |

| N/A   63C    P0    93W / 300W |  38395MiB / 81920MiB |    100%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

|   3  NVIDIA A800 80G...  Off  | 00000000:37:00.0 Off |                    0 |

| N/A   65C    P0   102W / 300W |  38347MiB / 81920MiB |    100%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

|   4  NVIDIA A800 80G...  Off  | 00000000:9B:00.0 Off |                    0 |

| N/A   64C    P0   108W / 300W |  38347MiB / 81920MiB |    100%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

|   5  NVIDIA A800 80G...  Off  | 00000000:9C:00.0 Off |                    0 |

| N/A   64C    P0   105W / 300W |  38395MiB / 81920MiB |    100%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

|   6  NVIDIA A800 80G...  Off  | 00000000:9D:00.0 Off |                    0 |

| N/A   58C    P0    97W / 300W |  36433MiB / 81920MiB |    100%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

|   7  NVIDIA A800 80G...  Off  | 00000000:9E:00.0 Off |                    0 |

| N/A   59C    P0    92W / 300W |  38347MiB / 81920MiB |    100%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

±----------------------------------------------------------------------------+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|=============================================================================|

| 0 N/A N/A 35191 C ...nv-py310-cu117/bin/python 36537MiB |

| 1 N/A N/A 35192 C ...nv-py310-cu117/bin/python 38393MiB |

| 2 N/A N/A 35193 C ...nv-py310-cu117/bin/python 38393MiB |

| 3 N/A N/A 35194 C ...nv-py310-cu117/bin/python 38345MiB |

| 4 N/A N/A 35195 C ...nv-py310-cu117/bin/python 38345MiB |

| 5 N/A N/A 35196 C ...nv-py310-cu117/bin/python 38393MiB |

| 6 N/A N/A 35197 C ...nv-py310-cu117/bin/python 36431MiB |

| 7 N/A N/A 35198 C ...nv-py310-cu117/bin/python 38345MiB |

±----------------------------------------------------------------------------+

输出文件:

text 复制代码
 tree /home/guodong.li/output/adgen-chatglm-6b-ft-1e-4

/home/guodong.li/output/adgen-chatglm-6b-ft-1e-4

├── all_results.json

├── checkpoint-300

│   ├── config.json

│   ├── configuration_chatglm.py

│   ├── generation_config.json

│   ├── global_step600

│   │   ├── mp_rank_00_model_states.pt

│   │   ├── zero_pp_rank_0_mp_rank_00_optim_states.pt

│   │   ├── zero_pp_rank_1_mp_rank_00_optim_states.pt

│   │   ├── zero_pp_rank_2_mp_rank_00_optim_states.pt

│   │   ├── zero_pp_rank_3_mp_rank_00_optim_states.pt

│   │   ├── zero_pp_rank_4_mp_rank_00_optim_states.pt

│   │   ├── zero_pp_rank_5_mp_rank_00_optim_states.pt

│   │   ├── zero_pp_rank_6_mp_rank_00_optim_states.pt

│   │   └── zero_pp_rank_7_mp_rank_00_optim_states.pt

│   ├── ice_text.model

│   ├── latest

│   ├── modeling_chatglm.py

│   ├── pytorch_model-00001-of-00002.bin

│   ├── pytorch_model-00002-of-00002.bin

│   ├── pytorch_model.bin.index.json

│   ├── quantization.py

│   ├── rng_state_0.pth

│   ├── rng_state_1.pth

│   ├── rng_state_2.pth

│   ├── rng_state_3.pth

│   ├── rng_state_4.pth

│   ├── rng_state_5.pth

│   ├── rng_state_6.pth

│   ├── rng_state_7.pth

│   ├── special_tokens_map.json

│   ├── tokenization_chatglm.py

│   ├── tokenizer_config.json

│   ├── trainer_state.json

│   ├── training_args.bin

│   └── zero_to_fp32.py

├── trainer_state.json

└── train_results.json

2 directories, 36 files

训练结束后没有保存模型权重,只保存了训练过程中的checkpoint,可在代码中添加trainer.save_model()进行保存。

使用DeepSpeed进行full finetuning,对于显存要求较高,且训练较慢。因此下面尝试使用官网提供的P-Tuning v2进行高效参数微调。

使用P-Tuning v2对ChatGLM-6B进行参数高效微调

对于 ChatGLM-6B 模型基于 P-Tuning v2 进行微调。可将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。

首先,修改train.sh脚本,主要是修改train_filevalidation_filemodel_name_or_pathoutput_dir参数:

text 复制代码
PRE_SEQ_LEN=128

LR=2e-2

CUDA_VISIBLE_DEVICES=0 python3 main.py

--do_train

--train_file /data/nfs/llm/data/AdvertiseGen/train.json

--validation_file /data/nfs/llm/data/AdvertiseGen/dev.json

--prompt_column content

--response_column summary

--overwrite_cache

--model_name_or_path /data/nfs/llm/model/chatglm-6b

--output_dir /home/guodong.li/output/adgen-chatglm-6b-pt- P R E S E Q L E N − PRE_SEQ_LEN- PRESEQLEN−LR

--overwrite_output_dir

--max_source_length 64

--max_target_length 64

--per_device_train_batch_size 1

--per_device_eval_batch_size 1

--gradient_accumulation_steps 16

--predict_with_generate

--max_steps 3000

--logging_steps 10

--save_steps 1000

--learning_rate $LR

--pre_seq_len $PRE_SEQ_LEN

--quantization_bit 4

运行过程:

text 复制代码
  0%|                  | 0/3000 [00:00<?, ?it/s]

...

{'loss': 4.2962, 'learning_rate': 0.0196, 'epoch': 0.01}

{'loss': 4.3112, 'learning_rate': 0.019533333333333333, 'epoch': 0.01}

2%|███▊             | 70/3000 [03:20<2:17:06,  2.81s/it]

GPU显存占用:

text 复制代码
|-------------------------------±---------------------±---------------------+

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |

|                               |                      |               MIG M. |

|=++==============|

|   0  NVIDIA A800 80G...  Off  | 00000000:34:00.0 Off |                    0 |

| N/A   71C    P0   300W / 300W |   6291MiB / 81920MiB |     74%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

对显存的占用确实低,即使用了P-Tuning v2进行参数高效微调,但训练的速度还是很慢。

修改train.sh增大batch_size继续干。

text 复制代码
PRE_SEQ_LEN=128

LR=2e-2

CUDA_VISIBLE_DEVICES=0 python3 main.py

--do_train

--train_file /data/nfs/llm/data/AdvertiseGen/train.json

--validation_file /data/nfs/llm/data/AdvertiseGen/dev.json

--prompt_column content

--response_column summary

--overwrite_cache

--model_name_or_path /data/nfs/llm/model/chatglm-6b

--output_dir /home/guodong.li/output/adgen-chatglm-6b-pt- P R E S E Q L E N − PRE_SEQ_LEN- PRESEQLEN−LR

--overwrite_output_dir

--max_source_length 64

--max_target_length 64

--per_device_train_batch_size 128

--per_device_eval_batch_size 8

--gradient_accumulation_steps 16

--predict_with_generate

--num_train_epochs 1

--logging_steps 10

--save_steps 100

--learning_rate $LR

--pre_seq_len $PRE_SEQ_LEN

--quantization_bit 4

运行过程:

text 复制代码
sh train.sh

04/14/2023 19:46:38 - WARNING - main - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: Fals

04/14/2023 19:46:38 - INFO - main - Training/evaluation parameters Seq2SeqTrainingArguments(

_n_gpu=1,

adafactor=False,

adam_beta1=0.9,

adam_beta2=0.999,

adam_epsilon=1e-08,

auto_find_batch_size=False,

bf16=False,

bf16_full_eval=False,

data_seed=None,

dataloader_drop_last=False,

dataloader_num_workers=0,

dataloader_pin_memory=True,

ddp_bucket_cap_mb=None,

ddp_find_unused_parameters=None,

ddp_timeout=1800,

debug=[],

deepspeed=None,

disable_tqdm=False,

do_eval=False,

do_predict=False,

do_train=True,

eval_accumulation_steps=None,

eval_delay=0,

eval_steps=None,

evaluation_strategy=no,

fp16=False,

fp16_backend=auto,

fp16_full_eval=False,

fp16_opt_level=O1,

fsdp=[],

fsdp_config={'fsdp_min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},

fsdp_min_num_params=0,

fsdp_transformer_layer_cls_to_wrap=None,

full_determinism=False,

generation_config=None,

generation_max_length=None,

generation_num_beams=None,

gradient_accumulation_steps=16,

gradient_checkpointing=False,

greater_is_better=None,

group_by_length=False,

half_precision_backend=auto,

hub_model_id=None,

hub_private_repo=False,

hub_strategy=every_save,

hub_token=<HUB_TOKEN>,

ignore_data_skip=False,

include_inputs_for_metrics=False,

jit_mode_eval=False,

label_names=None,

label_smoothing_factor=0.0,

learning_rate=0.02,

length_column_name=length,

load_best_model_at_end=False,

local_rank=-1,

log_level=passive,

log_level_replica=warning,

log_on_each_node=True,

logging_dir=/home/guodong.li/output/adgen-chatglm-6b-pt-128-2e-2/runs/Apr14_19-46-38_ai-app-2-46,

logging_first_step=False,

logging_nan_inf_filter=True,

logging_steps=10,

logging_strategy=steps,

lr_scheduler_type=linear,

max_grad_norm=1.0,

max_steps=-1,

metric_for_best_model=None,

mp_parameters=,

no_cuda=False,

num_train_epochs=1.0,

optim=adamw_hf,

optim_args=None,

output_dir=/home/guodong.li/output/adgen-chatglm-6b-pt-128-2e-2,

overwrite_output_dir=True,

past_index=-1,

per_device_eval_batch_size=8,

per_device_train_batch_size=128,

predict_with_generate=True,

prediction_loss_only=False,

push_to_hub=False,

push_to_hub_model_id=None,

push_to_hub_organization=None,

push_to_hub_token=<PUSH_TO_HUB_TOKEN>,

ray_scope=last,

remove_unused_columns=True,

report_to=[],

resume_from_checkpoint=None,

run_name=/home/guodong.li/output/adgen-chatglm-6b-pt-128-2e-2,

save_on_each_node=False,

save_safetensors=False,

save_steps=100,

save_strategy=steps,

save_total_limit=None,

seed=42,

sharded_ddp=[],

skip_memory_metrics=True,

sortish_sampler=False,

tf32=None,

torch_compile=False,

torch_compile_backend=None,

torch_compile_mode=None,

torchdynamo=None,

tpu_metrics_debug=False,

tpu_num_cores=None,

use_ipex=False,

use_legacy_prediction_loop=False,

use_mps_device=False,

warmup_ratio=0.0,

warmup_steps=0,

weight_decay=0.0,

xpu_backend=None,

)

04/14/2023 19:47:58 - WARNING - datasets.builder - Found cached dataset json (/home/guodong.li/.cache/huggingface/datasets/json/default-1cf934bed8e233e6e)

100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████

[INFO|configuration_utils.py:666] 2023-04-14 19:47:58,671 >> loading configuration file /data/nfs/llm/model/chatglm-6b/config.json

[WARNING|configuration_auto.py:925] 2023-04-14 19:47:58,671 >> Explicitly passing a `revision` is encouraged when loading a configuratio a newer revision.

[INFO|configuration_utils.py:666] 2023-04-14 19:47:58,679 >> loading configuration file /data/nfs/llm/model/chatglm-6b/config.json

[INFO|configuration_utils.py:720] 2023-04-14 19:47:58,681 >> Model config ChatGLMConfig {

"_name_or_path": "/data/nfs/llm/model/chatglm-6b",

"architectures": [

"ChatGLMModel"

],

"auto_map": {

"AutoConfig": "configuration_chatglm.ChatGLMConfig",

"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",

"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"

},

"bos_token_id": 130004,

"eos_token_id": 130005,

"gmask_token_id": 130001,

"hidden_size": 4096,

"inner_hidden_size": 16384,

"layernorm_epsilon": 1e-05,

"mask_token_id": 130000,

"max_sequence_length": 2048,

"model_type": "chatglm",

"num_attention_heads": 32,

"num_layers": 28,

"pad_token_id": 3,

"position_encoding_2d": true,

"pre_seq_len": null,

"prefix_projection": false,

"quantization_bit": 0,

"torch_dtype": "float16",

"transformers_version": "4.28.0",

"use_cache": true,

"vocab_size": 130528

}

[WARNING|tokenization_auto.py:675] 2023-04-14 19:47:58,683 >> Explicitly passing a revision is encouraged when loading a model with curevision.

[INFO|tokenization_utils_base.py:1807] 2023-04-14 19:47:58,692 >> loading file ice_text.model

[INFO|tokenization_utils_base.py:1807] 2023-04-14 19:47:58,692 >> loading file added_tokens.json

[INFO|tokenization_utils_base.py:1807] 2023-04-14 19:47:58,692 >> loading file special_tokens_map.json

[INFO|tokenization_utils_base.py:1807] 2023-04-14 19:47:58,692 >> loading file tokenizer_config.json

[WARNING|auto_factory.py:456] 2023-04-14 19:47:59,089 >> Explicitly passing a revision is encouraged when loading a model with custom ion.

[INFO|modeling_utils.py:2531] 2023-04-14 19:47:59,115 >> loading weights file /data/nfs/llm/model/chatglm-6b/pytorch_model.bin.index.jso

[INFO|configuration_utils.py:575] 2023-04-14 19:47:59,117 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████

[INFO|modeling_utils.py:3190] 2023-04-14 19:48:08,508 >> All model checkpoint weights were used when initializing ChatGLMForConditionalG

[WARNING|modeling_utils.py:3192] 2023-04-14 19:48:08,508 >> Some weights of ChatGLMForConditionalGeneration were not initialized from thtialized: ['transformer.prefix_encoder.embedding.weight']

You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

[INFO|modeling_utils.py:2839] 2023-04-14 19:48:08,548 >> Generation config file not found, using a generation config created from the mo

Quantized to 4 bit

input_ids [5, 65421, 61, 67329, 32, 98339, 61, 72043, 32, 65347, 61, 70872, 32, 69768, 61, 68944, 32, 67329, 64103, 61, 96914, 130001, 15388, 74531, 63825, 75786, 64009, 63823, 65626, 63882, 64619, 65388, 6, 64480, 65604, 85646, 110945, 10, 64089, 65966, 87052, 67329, 65564219, 63848, 112012, 6, 71231, 65099, 71252, 66800, 85768, 64566, 64338, 100323, 75469, 63823, 117317, 64218, 64257, 64051, 74197, 6, 6 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

inputs 类型#裤版型#宽松 风格#性感图案#线条 裤型#阔腿裤 宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长适贴身体验感棒棒哒。系带部分增加设计看点,还

label_ids [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,65840, 65388, 74531, 63825, 75786, 64009, 63823, 65626, 63882, 64619, 65388, 6, 64480, 65604, 85646, 110945, 10, 64089, 65966, 87052, 67 88473, 64219, 63848, 112012, 6, 71231, 65099, 71252, 66800, 85768, 64566, 64338, 100323, 75469, 63823, 117317, 64218, 64257, 64051, 741-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100

labels 宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自

/home/guodong.li/virtual-venv/chatglm-ptuningv2-venv-py310-cu117/lib/python3.10/site-packages/transformers/optimization.py:391: FutureWain a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set no_deprecation_warning=True to disable this warn

warnings.warn(

0%| 04/14/2023 19:51:19 - WARNING - transformers_modules.chatglm-6b.modeling_chatglm - use_cache=True is incompatible with gradient checkp

{'loss': 6.0246, 'learning_rate': 0.016428571428571428, 'epoch': 0.18}

{'loss': 7.8721, 'learning_rate': 0.012857142857142859, 'epoch': 0.36}

{'loss': 8.2653, 'learning_rate': 0.009285714285714286, 'epoch': 0.54}

{'loss': 8.6636, 'learning_rate': 0.005714285714285714, 'epoch': 0.71}

{'loss': 8.5985, 'learning_rate': 0.002142857142857143, 'epoch': 0.89}

{'train_runtime': 4868.4062, 'train_samples_per_second': 23.539, 'train_steps_per_second': 0.012, 'train_loss': 7.956800188337054, 'epoc

100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████

***** train metrics *****

epoch = 1.0

train_loss = 7.9568

train_runtime = 1:21:08.40

train_samples = 114599

train_samples_per_second = 23.539

train_steps_per_second = 0.012

显存占用:

text 复制代码
Sun Apr 16 19:53:00 2023

±----------------------------------------------------------------------------+

| NVIDIA-SMI 515.105.01   Driver Version: 515.105.01   CUDA Version: 11.7     |

|-------------------------------±---------------------±---------------------+

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |

|                               |                      |               MIG M. |

|=++==============|

|   0  NVIDIA A800 80G...  Off  | 00000000:34:00.0 Off |                    0 |

| N/A   71C    P0   281W / 300W |  63275MiB / 81920MiB |     92%      Default |

|                               |                      |             Disabled |

±------------------------------±---------------------±---------------------+

±----------------------------------------------------------------------------+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|=============================================================================|

| 0 N/A N/A 20126 C python3 63273MiB |

±----------------------------------------------------------------------------+

输出文件:

text 复制代码
> ls -al  /home/guodong.li/output/adgen-chatglm-6b-pt-128-2e-2

total 12

drwxrwxr-x 2 guodong.li guodong.li   98 Apr 14 21:12 .

drwxrwxr-x 8 guodong.li guodong.li  177 Apr 14 17:12 ...

-rw-rw-r-- 1 guodong.li guodong.li  195 Apr 14 21:12 all_results.json

-rw-rw-r-- 1 guodong.li guodong.li 1185 Apr 14 21:12 trainer_state.json

-rw-rw-r-- 1 guodong.li guodong.li  195 Apr 14 21:12 train_results.json

可以看到,通过调整batch_size,显存使用及利用率都提升上去了。

如果需要使用DeepSpeed进行数据并行,可参考如下命令:

text 复制代码
PRE_SEQ_LEN=128

LR=2e-2

deepspeed --include localhost:1,2,3 --master_port 29001 main.py

--deepspeed deepspeed.json

--do_train

--train_file /data/nfs/llm/data/AdvertiseGen/train.json

--validation_file /data/nfs/llm/data/AdvertiseGen/dev.json

--prompt_column content

--response_column summary

--overwrite_cache

--model_name_or_path /data/nfs/llm/model/chatglm-6b

--output_dir /home/guodong.li/output/adgen-chatglm-6b-pt

--overwrite_output_dir

--max_source_length 64

--max_target_length 64

--per_device_train_batch_size 128

--per_device_eval_batch_size 8

--gradient_accumulation_steps 16

--predict_with_generate

--num_train_epochs 10

--logging_steps 10

--save_steps 100

--learning_rate $LR

--pre_seq_len $PRE_SEQ_LEN

模型评估

修改evaluate.sh文件,修改model_name_or_path(模型路径),ptuning_checkpoint(P-Tuning v2微调之后的权重路径)等参数:

text 复制代码
PRE_SEQ_LEN=128

CHECKPOINT=adgen-chatglm-6b-pt-128-2e-2

STEP=3000

PRE_SEQ_LEN=128

CHECKPOINT=adgen-chatglm-6b-pt-128-2e-2

STEP=3000

CUDA_VISIBLE_DEVICES=1 python3 main.py

--do_predict

--validation_file /data/nfs/llm/data/AdvertiseGen/dev.json

--test_file /data/nfs/llm/data/AdvertiseGen/dev.json

--overwrite_cache

--prompt_column content

--response_column summary

--model_name_or_path /data/nfs/llm/model/chatglm-6b

--ptuning_checkpoint /home/guodong.li/output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-500

--output_dir /home/guodong.li/output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-500

--overwrite_output_dir

--max_source_length 64

--max_target_length 64

--per_device_eval_batch_size 1

--predict_with_generate

--pre_seq_len $PRE_SEQ_LEN

--quantization_bit 4

运行过程:

text 复制代码
sh evaluate.sh

04/16/2023 20:18:01 - WARNING - main - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: False

04/16/2023 20:18:01 - INFO - main - Training/evaluation parameters Seq2SeqTrainingArguments(

_n_gpu=1,

adafactor=False,

adam_beta1=0.9,

adam_beta2=0.999,

adam_epsilon=1e-08,

auto_find_batch_size=False,

...

fp16=False,

fp16_backend=auto,

fp16_full_eval=False,

fp16_opt_level=O1,

fsdp=[],

fsdp_config={'fsdp_min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},

fsdp_min_num_params=0,

fsdp_transformer_layer_cls_to_wrap=None,

full_determinism=False,

generation_config=None,

...

warmup_ratio=0.0,

warmup_steps=0,

weight_decay=0.0,

xpu_backend=None,

)

Downloading and preparing dataset json/default to /home/guodong.li/.cache/huggingface/datasets/json/default-df42438b5ccb0b44/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e...

Downloading data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 3419.73it/s]

Extracting data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 196.48it/s]

Dataset json downloaded and prepared to /home/guodong.li/.cache/huggingface/datasets/json/default-df42438b5ccb0b44/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e233e6e. Subsequent calls will reuse this data.

100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 326.85it/s]

[INFO|configuration_utils.py:666] 2023-04-16 20:19:21,784 >> loading configuration file /data/nfs/llm/model/chatglm-6b/config.json

[WARNING|configuration_auto.py:925] 2023-04-16 20:19:21,785 >> Explicitly passing a `revision` is encouraged when loading a configuration with custom code to ensure no malicious code has been contributed in a newer revision.

[INFO|configuration_utils.py:666] 2023-04-16 20:19:21,792 >> loading configuration file /data/nfs/llm/model/chatglm-6b/config.json

[INFO|configuration_utils.py:720] 2023-04-16 20:19:21,795 >> Model config ChatGLMConfig {

"_name_or_path": "/data/nfs/llm/model/chatglm-6b",

"architectures": [

"ChatGLMModel"

],

"auto_map": {

"AutoConfig": "configuration_chatglm.ChatGLMConfig",

"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",

"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"

},

"bos_token_id": 130004,

"eos_token_id": 130005,

"gmask_token_id": 130001,

"hidden_size": 4096,

"inner_hidden_size": 16384,

"layernorm_epsilon": 1e-05,

"mask_token_id": 130000,

"max_sequence_length": 2048,

"model_type": "chatglm",

"num_attention_heads": 32,

"num_layers": 28,

"pad_token_id": 3,

"position_encoding_2d": true,

"pre_seq_len": null,

"prefix_projection": false,

"quantization_bit": 0,

"torch_dtype": "float16",

"transformers_version": "4.28.0",

"use_cache": true,

"vocab_size": 130528

}

[WARNING|tokenization_auto.py:675] 2023-04-16 20:19:21,797 >> Explicitly passing a revision is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.

[INFO|tokenization_utils_base.py:1807] 2023-04-16 20:19:21,805 >> loading file ice_text.model

[INFO|tokenization_utils_base.py:1807] 2023-04-16 20:19:21,805 >> loading file added_tokens.json

[INFO|tokenization_utils_base.py:1807] 2023-04-16 20:19:21,805 >> loading file special_tokens_map.json

[INFO|tokenization_utils_base.py:1807] 2023-04-16 20:19:21,805 >> loading file tokenizer_config.json

[WARNING|auto_factory.py:456] 2023-04-16 20:19:22,186 >> Explicitly passing a revision is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.

[INFO|modeling_utils.py:2531] 2023-04-16 20:19:22,222 >> loading weights file /data/nfs/llm/model/chatglm-6b/pytorch_model.bin.index.json

[INFO|configuration_utils.py:575] 2023-04-16 20:19:22,224 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:08<00:00, 1.04s/it]

[INFO|modeling_utils.py:3190] 2023-04-16 20:19:30,912 >> All model checkpoint weights were used when initializing ChatGLMForConditionalGeneration.

[WARNING|modeling_utils.py:3192] 2023-04-16 20:19:30,912 >> Some weights of ChatGLMForConditionalGeneration were not initialized from the model checkpoint at /data/nfs/llm/model/chatglm-6b and are newly initialized: ['transformer.prefix_encoder.embedding.weight']

You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

[INFO|modeling_utils.py:2839] 2023-04-16 20:19:30,967 >> Generation config file not found, using a generation config created from the model config.

Quantized to 4 bit

input_ids [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 65421, 61, 75898, 32, 68554, 61, 77257, 64555, 32, 65107, 61, 66268, 32, 65347, 61, 71689, 32, 69768, 61, 85428, 32, 65173, 73942, 61, 70984, 32, 65173, 70936, 61, 64703, 65509, 130001, 130004]

inputs 类型#上衣材质#牛仔布 颜色#白色风格#简约 图案#刺绣衣样式#外套 衣款式#破洞

label_ids [5, 71689, 66561, 67061, 77257, 70984, 6, 72194, 65173, 64290, 64622, 81549, 63823, 65173, 64290, 83343, 63832, 63912, 65209, 64703, 65509, 64051, 6, 69418, 78598, 87019, 6, 64257, 71319, 66069, 74197, 63823, 65173, 72265, 64880, 64131, 63832, 73416, 85428, 66261, 6, 65594, 87834, 6, 73412, 105145, 65388, 63823, 130001, 130004]

labels 简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。

04/16/2023 20:21:30 - INFO - main - *** Predict ***

[INFO|configuration_utils.py:575] 2023-04-16 20:21:30,090 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

0%| | 0/1070 [00:00<?, ?it/s][INFO|configuration_utils.py:575] 2023-04-16 20:21:34,430 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

0%|▎ | 2/1070 [00:02<25:39, 1.44s/it][INFO|configuration_utils.py:575] 2023-04-16 20:21:37,311 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

0%|▍ | 3/1070

...

1%|█▎ | 8/1070 [00:20<50:13, 2.84s/it][INFO|configuration_utils.py:575] 2023-04-16 20:21:55,233 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

1%|█▍ | 9/1070 [00:23<50:24, 2.85s/it][INFO|configuration_utils.py:575] 2023-04-16 20:21:58,112 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

1%|█▌ | 10/1070 [00:26<50:30, 2.86s/it][INFO|configuration_utils.py:575] 2023-04-16 20:22:00,990 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

1%|█▋ | 11/1070 [00:29<50:37, 2.87s/it][INFO|configuration_utils.py:575] 2023-04-16 20:22:03,880 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

1%|█▊ | 12/1070 [00:32<50:38, 2.87s/it][INFO|configuration_utils.py:575] 2023-04-16 20:22:06,761 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

...

[INFO|configuration_utils.py:575] 2023-04-16 21:13:16,240 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▊| 1069/1070 [51:44<00:02, 2.92s/it][INFO|configuration_utils.py:575] 2023-04-16 21:13:19,107 >> Generate config GenerationConfig {

"_from_model_config": true,

"bos_token_id": 130004,

"eos_token_id": 130005,

"pad_token_id": 3,

"transformers_version": "4.28.0"

}

100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1070/1070 [51:47<00:00, 2.90s/it]Building prefix dict from the default dictionary ...

04/16/2023 21:13:22 - DEBUG - jieba - Building prefix dict from the default dictionary ...

Dumping model to file cache /tmp/jieba.cache

04/16/2023 21:13:22 - DEBUG - jieba - Dumping model to file cache /tmp/jieba.cache

Loading model cost 0.634 seconds.

04/16/2023 21:13:22 - DEBUG - jieba - Loading model cost 0.634 seconds.

Prefix dict has been built successfully.

04/16/2023 21:13:22 - DEBUG - jieba - Prefix dict has been built successfully.

100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1070/1070 [51:53<00:00, 2.91s/it]

***** predict metrics *****

predict_bleu-4 = 0.7846

predict_rouge-1 = 8.8941

predict_rouge-2 = 1.3703

predict_rouge-l = 16.4982

predict_runtime = 0:51:57.77

predict_samples = 1070

predict_samples_per_second = 0.343

predict_steps_per_second = 0.343

模型推理

新增inference.py文件:

text 复制代码
import os

import torch

from transformers import AutoConfig, AutoModel, AutoTokenizer

MODEL_PATH = "/data/nfs/llm/model/chatglm-6b"

CHECKPOINT_PATH = "/home/guodong.li/output/adgen-chatglm-6b-pt-128-2e-2/checkpoint-500"

载入Tokenizer

tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)

config = AutoConfig.from_pretrained(MODEL_PATH, trust_remote_code=True, pre_seq_len=128)

model = AutoModel.from_pretrained(MODEL_PATH, config=config, trust_remote_code=True).cuda()

prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin"))

new_prefix_state_dict = {}

for k, v in prefix_state_dict.items():

if k.startswith("transformer.prefix_encoder."):

new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v

model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)

print(f"Quantized to 4 bit")

model = model.quantize(4)

model = model.half().cuda()

model.transformer.prefix_encoder.float()

model = model.eval()

print("用户:你好\n")

response, history = model.chat(tokenizer, "你好", history=[])

print("ChatGLM-6B:\n",response)

print("\n------------------------------------------------\n用户:")

line = input()

while line:

response, history = model.chat(tokenizer, line, history=history)

print("ChatGLM-6B:\n", response)

print("\n------------------------------------------------\n用户:")

line = input()

运行命令:

text 复制代码
CUDA_VISIBLE_DEVICES=0 python3 inference.py

结语

上面使用了DeepSpeed DP+ZeRO对ChatGLM-6B进行全参数微调,同时,当我们遇到GPU资源不足的情况下,可以利用P-Tuning v2进行了高效参数微调。

参考文档

相关推荐
OneFlow深度学习框架1 小时前
LLM长上下文RAG能力实测:GPT o1 vs Gemini
gpt·语言模型·大模型·openai·gemini·o1
AI大模型-王哥20 小时前
产业科普 | 什么是人工智能和大模型?大模型入门到精通 看完你就明白了
人工智能·学习·langchain·大模型·大模型学习·大模型入门·大模型教程
CSDN云计算20 小时前
性能高于Transformer模型1.7-2倍,彩云科技发布基于DCFormer架构通用大模型云锦天章
大模型·transformer·dcformer·彩云天气·彩云小梦·云锦天章
微学AI1 天前
MathGPT的原理介绍,在中小学数学教学的应用场景,以及代码样例实现
人工智能·python·大模型·mathgpt
小嗷犬2 天前
【论文笔记】The Power of Scale for Parameter-Efficient Prompt Tuning
论文阅读·人工智能·大模型·微调·prompt
思绪无限2 天前
详解Gemini API的使用:在国内实现大模型对话与目标检测教程
人工智能·目标检测·计算机视觉·chatgpt·大模型·使用教程·gemini api
少喝冰美式2 天前
大语言模型在序列推荐中的应用
人工智能·程序人生·自然语言处理·大模型·大语言模型·计算机技术·大模型应用
再不会python就不礼貌了2 天前
本地部署多模态大模型,并结合Open-WebUI和Dify实现多模态对话、智能体,保姆级!
人工智能·深度学习·microsoft·机器学习·ai·架构·大模型
gz7seven2 天前
大模型学习笔记------BLIP模型详解与思考
大模型·多模态·blip·多模态学习·多模态大模型·图文生成
在人间负债^3 天前
基于标签相关性的多标签学习
人工智能·python·chatgpt·大模型·图像类型