【深入MaxCompute】人力家:借助Information Schema合理治理费用

简介: 人力家是由阿里钉钉和人力窝共同投资成立,帮助客户进入人力资源数字化,依靠产品技术创新驱动战略的互联网公司。本文将为大家带来MaxCompute与人力家客户案例深度解读。

作者:石玉阳 人力家 高级数据研发工程师

业务简介

人力家是由阿里钉钉和人力窝共同投资成立,帮助客户进入人力资源数字化,依靠产品技术创新驱动战略的互联网公司。公司主要提供包括人事管理、薪酬管理、社保管理、增值服务在内的人力资源SaaS服务,加速对人力资源领域赋能,实现人力资源新工作方式。目前已服务电子商务、零售服务等领域的多行业客户。

人力家是一家典型的创业公司,目前处于一个竞争激烈的市场环境中,公司具有多产品性质,每个产品的数据具有独立性,同时为了配合内部CRM数据需求,更好地把数据整合,对于数仓团队来说是一个不小的挑战,对于数仓团队要求的是稳,准,及时响应。需要数仓团队既要满足内部的数据需求,也需要在计算的成本上实现优化。

业务痛点

MaxCompute作为一款优秀的大数据产品,其不仅可以高性价比分析处理海量数据,同时MaxCompute支持开发接口和生态,为数据、应用迁移、二次开发提供灵活性。QuickBI可以直连MaxCompute产出报表数据供公司内部分析、统计、决策。因为公司开通的MaxCompute是按量付费规格,所以计算任务和QuickBI 报表每次不同的查询都会耗费计算资源导致MaxCompute计算费用增加,在过去的一段时间,MaxCompute每个月的成本波动较大,不符合期望值,且不能有效、及时的发现一些高成本sql和多频访问报表数据集。

具体原因分析

分析 MaxCompute 账单发现费用波动是因为大计算任务和QuickBI报表数据集的自定义sql,主要为以下五点。

1、单SQL查询费用较高

MaxCompute计算和部分QuickBI报表按照时间维度来进行查询数据,但是有些时间查询跨度较大,或者基表数据量大从而形成一条大查询sql。

2、分区不合理

部分MaxCompute计算逻辑和报表数据集设置不合理,有些查询是直接查询近3年分区的数据, 造成计算成本费用增加。

3、报表访问频率高,筛选项不同

部分QuickBI报表的数据集成本其实很低,但是每天访问的次数确实很大,由于重复执行造成MaxCompute计算作业量增加,从而导致计算费用增加。

4、兼容报表增加维表数据

部分报表数据集为了兼容数据产出,需要增加部分维表数据来进行关联,但有些维表数据集其实很大,最后也会形成一条大查询sql。

5、运行时间较长

MaxCompute部分计算sql和QuickBI报表数据集计算时间较长,影响整体业务运行时间和报表数据产出。

基于Information Schema分析项目作业

MaxCompute元数据服务Information Schema提供了项目元数据及使用历史数据等信息。在ANSI SQL-92的Information Schema基础上,添加了面向MaxCompute服务特有的字段及视图。

租户级别Information Schema是原项目级别Information Schema的升级版,是在每个阿里云账号下创建名为SYSTEM_CATALOG的项目,并内置Information Schema,通过访问该内置Schema提供的只读视图,查询当前用户所有项目的元数据信息以及使用历史信息。元数据视图列表如下

对于以上部分视图元数据信息,我们更关心的是Information_Schema.TASKS_HISTORY表中每日任务计算的时间、成本和次数。

分析SQL脚本

这里我们使用的是租户级别的 Information Schema,相比于项目级别的 Information Schema,租户级别的只需要创建一个计算节点就可以计算所有 project 的任务,而项目级别的 Information Schema 每个 project 都需要一个计算节点,这里更推荐租户级别的 Information Schema。

sql 复制代码
set odps.namespace.schema=true;
set odps.sql.decimal.odps2=true;

create table if not exists ads_project_cost_pay_di
(
    env_type  string comment '环境类型'
    ,cost_type string comment '消费类型'
    ,inst_id string comment  '唯一id,作业id'
    ,owner_name string comment  '作业所属人'
    ,task_type string  comment  '作业类型  SQL:SQL作业 CUPID:Spark或Mars作业 SQLCost:SQL预估作业 SQLRT:查询加速SQL作业 LOT:MapReduce作业 PS:PAI的Parameter Server AlgoTask:机器学习作业'
    ,input_records string comment  '作业输入的records数目'
    ,output_records string comment '作业输出的records数目'
    ,input_bytes string comment '实际扫描的数据量,与Logview相同。'
    ,output_bytes string comment '输出字节数。'
    ,status string comment '数据采集瞬间的运行状态(非实时状态)。包含以下状态:Terminated:作业已执行结束。Failed:作业失败。 Cancelled:作业被取消。'
    ,cost_pay DECIMAL(18,5) comment '费用 单位元'
    ,complexity string  comment  '任务复杂度'
    ,settings string comment '上层调度或用户传入的信息,以JSON格式存储。包含字段:USERAGENT、BIZID、SKYNET_ID和SKYNET_NODENAME。'
    ,sql_script string comment 'sql 代码'
    ,start_time string comment '开始时间'
    ,end_time string comment '结束时间'
        ,data_collection string comment  'quickbi数据集'
)
comment 'odps 费用 明细'
partitioned by (ds string comment '分区')
;

insert overwrite table ads_project_cost_pay_di partition(ds=${bizdate})
select  case when task_catalog = 'renlijia_ng' then '生产' 
             when task_catalog = 'renlijia_ng_dev' then '测试'
             else  task_catalog
         end as   env_type
        ,if(regexp_count(settings,'quickbi')>0,'quickbi',task_catalog)cost_type
        ,inst_id
        ,owner_name
        ,task_type
        ,input_records
        ,output_records
        ,input_bytes
        ,output_bytes
        ,status
        ,nvl(case   when task_type = 'SQL' then cast(input_bytes/1024/1024/1024 * complexity * 0.3 as DECIMAL(18,5) )
                    when task_type = 'SQLRT' then cast(input_bytes/1024/1024/1024 * complexity * 0.3 as DECIMAL(18,5) )
                    when task_type = 'CUPID' and status='Terminated'then cast(cost_cpu/100/3600 * 0.66 as DECIMAL(18,5) ) 
                    else 0 
        end,0) cost_pay
        ,complexity 
        ,settings
        ,operation_text sql_script
        ,start_time
        ,end_time
        ,regexp_extract(operation_text,'(?<=quickbi=).*?(?==quickbi)',0)data_collection
from  SYSTEM_CATALOG.INFORMATION_SCHEMA.TASKS_HISTORY where ds=${bizdate};

注:sql成本计算公式(官方示例):

sql 复制代码
case   
when task_type = 'SQL' then cast(input_bytes/1024/1024/1024 * complexity * 0.3 as DECIMAL(18,5) )
when task_type = 'SQLRT' then cast(input_bytes/1024/1024/1024 * complexity * 0.3 as DECIMAL(18,5) )
when task_type = 'CUPID' and status='Terminated'then cast(cost_cpu/100/3600 * 0.66 as DECIMAL(18,5) ) 
else 0 
end;
治理前后MaxCompute整体成本对比
报表产出明细数据

因为公司是按量付费的MaxCompute,所有我们主要关心的是成本问题和报表的访问情况。对此我们主要从环境、数据集、用户等维度进行分析。

QuickBI数据集(查ads_project_cost_pay_di表)

QuickBI报表Demo

QuickBI数据集字段是从sql-script中正则匹配出来,且QuickBI数据集需要单独增加一个字段用来抽取数据集名。

1、手动在QuickBI数据集增加如下字段:

ini 复制代码
'quickbi=xxx数据集=quickbi' as 数据集自定义字段

2、利用MaxCompute函数regexp_extract按照如下方式正则匹配:

scss 复制代码
regexp_extract(operation_text,'(?<=quickbi=).*?(?==quickbi)',0)

分析改进项:

1、替换分区不合理数据表或数据集。

2、维表数据在上层加工,下层减少依赖项,做到最好只查一张表。

3、高频访问数据集优化存储大小和QuickBI 报表仪表盘数量。

4、减少报表产出时间。

综上:借助MaxCompute 租户级别Information Schema,拉取每日历史作业信息,公司成功把每日MaxCompute成本降低到合理波动区间。

相关推荐
数字化脑洞实验室1 小时前
如何理解不同行业AI决策系统的功能差异?
大数据·人工智能·算法
starandsea6 小时前
gitlab解决传过大文件后删除导致pack过大问题
大数据·elasticsearch·gitlab
拉姆哥的小屋7 小时前
时间序列早期分类中的置信度累积问题:从ECE-C到时序依赖建模
大数据·人工智能
蚁巡信息巡查系统8 小时前
政府网站与政务新媒体监测服务主要是做什么的?
大数据·人工智能
饼干吖8 小时前
hadoop安装
大数据·hadoop·教程
私域实战笔记10 小时前
选企业微信服务商哪家好?从工具适配与行业案例看选型逻辑
大数据·人工智能·企业微信
AI企微观察11 小时前
企业微信社群运营玩法有哪些?企业微信社群工具有哪些功能?——从拉新到留存的玩法设计与工具支撑
大数据·人工智能
金融小师妹12 小时前
OpenAI拟借AI估值重构浪潮冲击1.1万亿美元IPO——基于市场情绪因子与估值量化模型的深度分析
大数据·人工智能·深度学习·1024程序员节
wudl556613 小时前
Flink Keyed State 详解之二
大数据·flink
IT学长编程13 小时前
计算机毕业设计 基于Python的热门游戏推荐系统的设计与实现 Django 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·python·django·毕业设计·课程设计·毕业论文