Flink中KeyBy、分区、分组的正确理解

1.Flink中的KeyBy

在Flink中,KeyBy作为我们常用的一个聚合类型算子,它可以按照相同的Key对数据进行重新分区,分区之后分配到对应的子任务当中去。
源码解析

keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 KeyedStream(键控流),KeyedStream 可以认为是"分区流"或者"键控流",它是对 DataStream 按照 key 的一个逻辑分区。

所以泛型有两个类型:除去当前流中的元素类型外,还需要指定 key 的类型。

KeyBy是如何实现分区的呢

Flink中的KeyBy底层其实就是通过Hash实现的,通过对Key的值进行Hash,再做一次murmurHash,取模运算。

再通过Job的并行度,就能获取每个Key应该分配到那个子任务中了。

2.分组和分区在Flink中的区别

分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。

数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。

分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作(如聚合、窗口计算等)。

key值相同的数据将进入同一个分组中。

注意:数据如果具有相同的key将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。

3.代码示例

java 复制代码
package com.flink.DataStream.Aggregation;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkKeyByDemo {
    public static void main(String[] args) throws Exception {
        //TODO 创建Flink上下文执行环境
        StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置并行度为1
        streamExecutionEnvironment.setParallelism(1);
        //设置执行模式为批处理
        streamExecutionEnvironment.setRuntimeMode(RuntimeExecutionMode.BATCH);
        //TODO source 从集合中创建数据源
        DataStreamSource<String> dataStreamSource = streamExecutionEnvironment.fromElements("hello word", "hello flink");
        //TODO 方式一 匿名实现类
        SingleOutputStreamOperator<Tuple2<String, Integer>> outputStreamOperator1 = dataStreamSource
                .flatMap(new FlatMapFunction<String, String>() {
                    @Override
                    public void flatMap(String s, Collector<String> collector) throws Exception {
                        String[] s1 = s.split(" ");
                        for (String word : s1) {
                            collector.collect(word);
                        }
                    }
                })
                .map(new MapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public Tuple2<String, Integer> map(String s) throws Exception {
                        Tuple2<String, Integer> aa = Tuple2.of(s, 1);
                        return aa;
                    }
                })
                /**
                 * keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 KeyedStream(键控流)
                 * KeyedStream 可以认为是"分区流"或者"键控流",它是对 DataStream 按照 key 的一个逻辑分区
                 * 所以泛型有两个类型:除去当前流中的元素类型外,还需要指定 key 的类型。
                 * */

                /**
                 * 分组和分区在Flink 中具有不同的含义和作用:
                 * 分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。
                 *      数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。
                 * 分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作 (如聚合、窗口计算等)。
                 *      key 值相同的数据将进入同一个分组中。
                 * 注意:数据如果具有相同的key将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。
                 * */

                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
                        return stringIntegerTuple2.f0;
                    }
                })
                .sum(1);
        //TODO 方式二 Lamda表达式实现
        SingleOutputStreamOperator<Tuple2<String, Integer>> outputStreamOperator2 = dataStreamSource
                .flatMap((String s, Collector<String> collector) -> {
                    String[] s1 = s.split(" ");
                    for (String word : s1) {
                        collector.collect(word);
                    }
                })
                .returns(Types.STRING)
                .map((String word) -> {
                    return Tuple2.of(word, 1);
                })
                //Java中lamda表达式存在类型擦除
                .returns(Types.TUPLE(Types.STRING, Types.INT))
                .keyBy((Tuple2<String, Integer> s) -> {
                    return s.f0;
                })
                .sum(1);
        //TODO sink
        outputStreamOperator1.print("方式一");
        outputStreamOperator2.print("方式二");
        //TODO 执行
        streamExecutionEnvironment.execute("Flink KeyBy Demo");
    }
}
相关推荐
xinyuan_12345613 小时前
数智化招采平台实战指南:AI如何让采购管理实现效率与价值落地
大数据·人工智能
Tezign_space13 小时前
技术实战:Crocs如何构建AI驱动的智能内容矩阵,实现内容播放量提升470%?
大数据·人工智能·矩阵·aigc·内容运营·多智能体系统·智能内容矩阵
八月瓜科技13 小时前
八月瓜科技参与“数据要素驱动产业升级”活动,分享【数据赋能科技创新全链条】
java·大数据·人工智能·科技·机器人·程序员创富
梦里不知身是客1113 小时前
flink的CDC 的种类
大数据·flink
TOWE technology14 小时前
PDU、工业连接器与数据中心机柜电力系统
大数据·人工智能·数据中心·idc·pdu·智能pdu·定制电源管理
五度易链-区域产业数字化管理平台14 小时前
行业研究+大数据+AI:“五度易链”如何构建高质量产业数据库?
大数据·人工智能
aitoolhub14 小时前
AI 生图技术解析:从训练到输出的全流程机制
大数据·人工智能·深度学习
计算所陈老师14 小时前
Palantir的核心是Ontology
大数据·人工智能·知识图谱
Macbethad14 小时前
工业设备系统管理程序技术方案
大数据·wpf