Redis缓存穿透、缓存击穿、缓存雪崩详解

目录

缓存处理流程

一、缓存穿透

1、概念

2、解决办法

二、缓存击穿

1、概念

2、解决办法

三、缓存雪崩

1、概念

2、解决办法


缓存处理流程

接收到查询数据请求时,优先从缓存中查询,若缓存中有数据,则直接返回,若缓存中查不到则从DB中查询,将查询的结果更新到缓存中,并返回查询结果,若DB中查不到,则返回空数据

一、缓存穿透

1、概念

缓存穿透:缓存和数据库中都没有的数据,可用户还是源源不断的发起请求,导致每次请求都会到数据库,从而压垮数据库。

2、解决办法

①、业务层校验

用户发过来的请求,根据请求参数进行校验,对于明显错误的参数,直接拦截返回。

比如,请求参数为主键自增id,那么对于请求小于0的id参数,明显不符合,可以直接返回错误请求。

②、不存在数据设置短过期时间

对于某个查询为空的数据,可以将这个空结果进行Redis缓存,但是设置很短的过期时间,比如30s,可以根据实际业务设定。注意一定不要影响正常业务。

③、布隆过滤器

布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在。当布隆过滤器说,某种东西存在时,这种东西可能不存在;当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在。 布隆过滤器相对于Set、Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少**,它也有缺点,就是判断某种东西是否存在时,可能会被误判**。但是只要参数设置的合理,它的精确度也可以控制的相对精确,只会有小小的误判概率

对于缓存穿透,我们可以将查询的数据条件都哈希到一个足够大的布隆过滤器中,用户发送的请求会先被布隆过滤器拦截,一定不存在的数据就直接拦截返回了,从而避免下一步对数据库的压力。

二、缓存击穿

1、概念

缓存击穿:Redis中一个热点key在失效的同时,大量的请求过来,从而会全部到达数据库,压垮数据库。

这里要注意的是这是某一个热点key过期失效,和后面介绍缓存雪崩是有区别的。比如 对于查询某个商品信息,缓存在Redis中,刚好0点,这个商品信息在Redis中过期查不到了,这时候大量的用户又同时正好访问这个商品,就会造成大量的请求同时到达数据库。

2、解决办法

①、设置热点数据永不过期

对于某个需要频繁获取的信息,缓存在Redis中,并设置其永不过期。当然这种方式比较粗暴,对于某些业务场景是不适合的。

②、定时更新

比如这个热点数据的过期时间是1h,那么每到59minutes时,通过定时任务去更新这个热点key,并重新设置其过期时间。

③**、互斥锁**

这是解决缓存击穿比较常用的方法。

互斥锁简单来说就是在Redis中根据key获得的value值为空时,先锁上,然后从数据库加载,加载完毕,释放锁。若其他线程也在请求该key时,发现获取锁失败,则睡眠一段时间(比如100ms)后重试。

java 复制代码
`  @Autowired
    private StringRedisTemplate stringRedisTemplate;
    @Autowired
    private Jedis               jedis;
    private final String        MUTEX_KEY = "MUTEX_";

    public String getData(String key) throws InterruptedException {
        String value = stringRedisTemplate.opsForValue().get(key);
        //缓存失效
        if (StringUtils.isBlank(value)) {
            //设置分布式锁,只允许一个线程去查询DB,同时指定过期时间为1min,防止del操作失败,导致死锁,缓存过期无法加载DB数据
            if (tryLock(MUTEX_KEY + key, 60L)) {
                //从数据库查询数据,将查询的结果缓存起来
                value = getValueFromDB();
                stringRedisTemplate.opsForValue().set(key, value);

                //释放分布式锁
                stringRedisTemplate.delete(MUTEX_KEY + key);
            } else {
                //当锁被占用时,睡眠5s继续调用获取数据请求
                Thread.sleep(5000);
                getData(key);}
        }
        return value;
    }

    /**
     * redis实现分布式事务锁 尝试获取锁
     * 
     * @param lockName  锁
     * @param expireTime 过期时间
     * @return
     */
    public Boolean tryLock(String lockName, long expireTime) {
        //RedisCallback redis事务管理,将redis操作命令放到事务中处理,保证执行的原子性
        String result = stringRedisTemplate.opsForValue().getOperations().execute(new RedisCallback<String>() {

            /**
             * @param key 使用key来当锁,因为key是唯一的。
             * @param value 请求标识,可通过UUID.randomUUID().toString()生成,解锁时通value参数可识别出是哪个请求添加的锁
             * @param nx 表示SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作
             * @param ex 表示过期时间的单位是秒
             * @param time 表示过期时间
             */
            @Override
            public String doInRedis(RedisConnection connection) throws DataAccessException {
                return jedis.set(lockName, UUID.randomUUID().toString(), "NX", "EX", expireTime);
            }
        });

        if ("OK".equals(result)) {
            return true;
        }
        return false;
    }

    public String getValueFromDB() {
        return "";
    }
`

三、缓存雪崩

1、概念

缓存雪崩:Redis中缓存的数据大面积同时失效,或者Redis宕机,从而会导致大量请求直接到数据库,压垮数据库。

对于一个业务系统,如果Redis宕机或大面积的key同时过期,会导致大量请求同时打到数据库,这是灾难性的问题。

2、解决办法

①、设置有效期均匀分布

避免缓存设置相近的有效期,我们可以在设置有效期时增加随机值;

或者统一规划有效期,使得过期时间均匀分布。

②、数据预热

对于即将来临的大量请求,我们可以提前走一遍系统,将数据提前缓存在Redis中,并设置不同的过期时间。

缓存预热的操作方法

数据量不大的时候,工程启动的时候进行加载缓存动作;

数据量大的时候,设置一个定时任务脚本,进行缓存的刷新;

数据量太大的时候,优先保证热点数据进行提前加载到缓存。

③、保证Redis服务高可用

前面我们介绍过Redis的哨兵模式和集群模式,为防止Redis集群单节点故障,可以通过这两种模式实现高可用。

相关推荐
乄bluefox2 小时前
SpringBoot中使用Sharding-JDBC实战(实战+版本兼容+Bug解决)
java·数据库·spring boot·redis·后端·缓存·bug
凌虚(失业了求个工作)3 小时前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·redis·python·langchain·llama
mit6.8246 小时前
[Redis#3] 通用命令 | 数据类型 | 内部编码 | 单线程 | 快的原因
linux·redis·分布式
mit6.8246 小时前
[Redis#4] string | 常用命令 | + mysql use:cache | session
数据库·redis·后端·缓存
Beekeeper&&P...7 小时前
map和redis关系
数据库·redis·缓存
一朵忽明忽暗的云7 小时前
【Redis_Day6】Hash类型
redis·hash类型
fpcc19 小时前
redis6.0之后的多线程版本的问题
c++·redis
刘九灵19 小时前
Redis ⽀持哪⼏种数据类型?适⽤场景,底层结构
redis·缓存
登云时刻1 天前
Kubernetes集群外连接redis集群和使用redis-shake工具迁移数据(一)
redis·kubernetes·bootstrap
煎饼小狗1 天前
Redis五大基本类型——Zset有序集合命令详解(命令用法详解+思维导图详解)
数据库·redis·缓存