测试PySpark

文章最前 : 我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。

这篇文章旨在帮你写出健壮的pyspark 代码。

在这里,通过它写pyspark单元测试,看这个代码通过PySpark built,下载该目录代码,查看JIRA 看板票的pyspark测试

创建PySpark应用

这边一个例子是怎么创建pyspark应用,如果你的应用已经测试,你可以跳过这一段,测试你的pyspark程序。

现在,开始测试你的spark session

java 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col

# Create a SparkSession
spark = SparkSession.builder.appName("Testing PySpark Example").getOrCreate()

接下来,创建一个DataFrame

java 复制代码
sample_data = [{"name": "John    D.", "age": 30},
  {"name": "Alice   G.", "age": 25},
  {"name": "Bob  T.", "age": 35},
  {"name": "Eve   A.", "age": 28}]

df = spark.createDataFrame(sample_data)

现在,我们对我们的DataFrame来定义转换算子

java 复制代码
from pyspark.sql.functions import col, regexp_replace

# Remove additional spaces in name
def remove_extra_spaces(df, column_name):
    # Remove extra spaces from the specified column
    df_transformed = df.withColumn(column_name, regexp_replace(col(column_name), "\\s+", " "))

    return df_transformed

transformed_df = remove_extra_spaces(df, "name")

transformed_df.show()
复制代码
+---+--------+
|age|    name|
+---+--------+
| 30| John D.|
| 25|Alice G.|
| 35|  Bob T.|
| 28|  Eve A.|
+---+--------+

测试你的pyspark应用

现在来测试你的pyspark转换算子。一个选择简化DataFrame测试结果,可以简化数据或者输入数据。更好的方式写测试例子,这里有一些例子怎么去测试我们的代码,这些代码是基于spark 3.5以下版本。对于这些例子做笔记是非常值得的,可以通过测试框架,不管你是使用unittest or pytest; built-in PySpark 测试是单机的,意味着他兼容测试框架和CI测试

选项1: 仅仅使用PySpark Built-in 测试方法

java 复制代码
import pyspark.testing
from pyspark.testing.utils import assertDataFrameEqual

# Example 1
df1 = spark.createDataFrame(data=[("1", 1000), ("2", 3000)], schema=["id", "amount"])
df2 = spark.createDataFrame(data=[("1", 1000), ("2", 3000)], schema=["id", "amount"])
assertDataFrameEqual(df1, df2)  # pass, DataFrames are identical
java 复制代码
# Example 2
df1 = spark.createDataFrame(data=[("1", 0.1), ("2", 3.23)], schema=["id", "amount"])
df2 = spark.createDataFrame(data=[("1", 0.109), ("2", 3.23)], schema=["id", "amount"])
assertDataFrameEqual(df1, df2, rtol=1e-1)  # pass, DataFrames are approx equal by rtol

您还可以简单地比较两个 DataFrame 模式:

java 复制代码
from pyspark.testing.utils import assertSchemaEqual
from pyspark.sql.types import StructType, StructField, ArrayType, DoubleType

s1 = StructType([StructField("names", ArrayType(DoubleType(), True), True)])
s2 = StructType([StructField("names", ArrayType(DoubleType(), True), True)])

assertSchemaEqual(s1, s2)  # pass, schemas are identical

选项 2:使用单元测试

对于更复杂的测试场景,您可能需要使用测试框架。

最流行的测试框架选项之一是单元测试。让我们逐步了解如何使用内置 Pythonunittest库来编写 PySpark 测试。有关该unittest库的更多信息,请参阅此处: https: //docs.python.org/3/library/unittest.html

首先,您需要一个 Spark 会话。您可以使用包@classmethod中的装饰器unittest来负责设置和拆除 Spark 会话。

java 复制代码
import unittest

class PySparkTestCase(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.spark = SparkSession.builder.appName("Testing PySpark Example").getOrCreate()


    @classmethod
    def tearDownClass(cls):
        cls.spark.stop()

现在我们来写一个unittest类。

java 复制代码
from pyspark.testing.utils import assertDataFrameEqual

class TestTranformation(PySparkTestCase):
    def test_single_space(self):
        sample_data = [{"name": "John    D.", "age": 30},
                       {"name": "Alice   G.", "age": 25},
                       {"name": "Bob  T.", "age": 35},
                       {"name": "Eve   A.", "age": 28}]

        # Create a Spark DataFrame
        original_df = spark.createDataFrame(sample_data)

        # Apply the transformation function from before
        transformed_df = remove_extra_spaces(original_df, "name")

        expected_data = [{"name": "John D.", "age": 30},
        {"name": "Alice G.", "age": 25},
        {"name": "Bob T.", "age": 35},
        {"name": "Eve A.", "age": 28}]

        expected_df = spark.createDataFrame(expected_data)

        assertDataFrameEqual(transformed_df, expected_df)
复制代码
运行时,unittest将选取名称以“test”开头的所有函数。

选项 3:使用Pytest

pytest我们还可以使用最流行的 Python 测试框架之一来编写测试。有关 的更多信息pytest,请参阅此处的文档: https: //docs.pytest.org/en/7.1.x/contents.html

使用pytest固定装置允许我们在测试之间共享 Spark 会话,并在测试完成时将其拆除。

java 复制代码
import pytest

@pytest.fixture
def spark_fixture():
    spark = SparkSession.builder.appName("Testing PySpark Example").getOrCreate()
    yield spark

然后我们可以这样定义我们的测试:

java 复制代码
import pytest
from pyspark.testing.utils import assertDataFrameEqual

def test_single_space(spark_fixture):
    sample_data = [{"name": "John    D.", "age": 30},
                   {"name": "Alice   G.", "age": 25},
                   {"name": "Bob  T.", "age": 35},
                   {"name": "Eve   A.", "age": 28}]

    # Create a Spark DataFrame
    original_df = spark.createDataFrame(sample_data)

    # Apply the transformation function from before
    transformed_df = remove_extra_spaces(original_df, "name")

    expected_data = [{"name": "John D.", "age": 30},
    {"name": "Alice G.", "age": 25},
    {"name": "Bob T.", "age": 35},
    {"name": "Eve A.", "age": 28}]

    expected_df = spark.createDataFrame(expected_data)

    assertDataFrameEqual(transformed_df, expected_df)

当您使用该pytest命令运行测试文件时,它将选取名称以"test"开头的所有函数。

把它们放在一起!

让我们在单元测试示例中一起查看所有步骤。

java 复制代码
# pkg/etl.py
import unittest

from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.sql.functions import regexp_replace
from pyspark.testing.utils import assertDataFrameEqual

# Create a SparkSession
spark = SparkSession.builder.appName("Sample PySpark ETL").getOrCreate()

sample_data = [{"name": "John    D.", "age": 30},
  {"name": "Alice   G.", "age": 25},
  {"name": "Bob  T.", "age": 35},
  {"name": "Eve   A.", "age": 28}]

df = spark.createDataFrame(sample_data)

# Define DataFrame transformation function
def remove_extra_spaces(df, column_name):
    # Remove extra spaces from the specified column using regexp_replace
    df_transformed = df.withColumn(column_name, regexp_replace(col(column_name), "\\s+", " "))

    return df_transformed
java 复制代码
# pkg/test_etl.py
import unittest

from pyspark.sql import SparkSession

# Define unit test base class
class PySparkTestCase(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.spark = SparkSession.builder.appName("Sample PySpark ETL").getOrCreate()

    @classmethod
    def tearDownClass(cls):
        cls.spark.stop()

# Define unit test
class TestTranformation(PySparkTestCase):
    def test_single_space(self):
        sample_data = [{"name": "John    D.", "age": 30},
                        {"name": "Alice   G.", "age": 25},
                        {"name": "Bob  T.", "age": 35},
                        {"name": "Eve   A.", "age": 28}]

        # Create a Spark DataFrame
        original_df = spark.createDataFrame(sample_data)

        # Apply the transformation function from before
        transformed_df = remove_extra_spaces(original_df, "name")

        expected_data = [{"name": "John D.", "age": 30},
        {"name": "Alice G.", "age": 25},
        {"name": "Bob T.", "age": 35},
        {"name": "Eve A.", "age": 28}]

        expected_df = spark.createDataFrame(expected_data)

        assertDataFrameEqual(transformed_df, expected_df)
java 复制代码
unittest.main(argv=[''], verbosity=0, exit=False)
复制代码
在 1.734 秒内完成 1 次测试
复制代码
<unittest.main.TestProgram 位于 0x174539db0>
相关推荐
唯余木叶下弦声20 天前
Spark区分应用程序 Application、作业Job、阶段Stage、任务Task
大数据·spark·pyspark
唯余木叶下弦声1 个月前
PySpark3:pyspark.sql.functions常见的60个函数
python·spark·pyspark
氵文大师1 个月前
[pyspark] pyspark中如何修改列名字
pyspark
出发行进1 个月前
Spark的yarn集群环境搭建
大数据·linux·分布式·spark·pyspark
天冬忘忧2 个月前
PySpark 本地开发环境搭建与实践
spark·conda·pyspark
songqq272 个月前
【快速上手】pyspark 集群环境下的搭建(Yarn模式)
大数据·spark·pyspark
尘世壹俗人2 个月前
PySpark任务提交
大数据·pyspark
出发行进2 个月前
Spark学习
大数据·linux·python·数据分析·spark·centos·pyspark
百流2 个月前
Pyspark中pyspark.sql.functions常用方法(3)(array操作)
linux·python·spark·pyspark·1024程序员节
百流2 个月前
Pyspark中pyspark.sql.functions常用方法(2)(时间函数)
数据库·python·spark·pyspark·dataframe