基于Ascend910+PyTorch1.11.0+CANN6.3.RC2的YoloV5训练推理一体化解决方案

昇腾Pytorch镜像:https://ascendhub.huawei.com/#/detail/ascend-pytorch

代码仓:git clone https://gitee.com/ascend/modelzoo-GPL.git

coco测试验证集:wget https://bj-aicc.obs.cn-north-309.mtgascendic.cn/dataset/coco2017/coco.zip

coco训练集(放images下):wget https://bj-aicc.obs.cn-north-309.mtgascendic.cn/dataset/coco2017/train2017.zip

部分代码

python 复制代码
# import StreamManagerApi.py
from StreamManagerApi import *

if __name__ == '__main__':
    # init stream manager
    streamManagerApi = StreamManagerApi()
    ret = streamManagerApi.InitManager()
    if ret != 0:
        print("Failed to init Stream manager, ret=%s" % str(ret))
        exit()

    # create streams by pipeline config file
    with open("data/pipeline/Sample.pipeline", 'rb') as f:
        pipelineStr = f.read()
    ret = streamManagerApi.CreateMultipleStreams(pipelineStr)
    if ret != 0:
        print("Failed to create Stream, ret=%s" % str(ret))
        exit()

    # Construct the input of the stream
    dataInput = MxDataInput()
    with open("data/test.jpg", 'rb') as f:
        dataInput.data = f.read()

    # The following is how to set the dataInput.roiBoxs
    """
    roiVector = RoiBoxVector()
    roi = RoiBox()
    roi.x0 = 100
    roi.y0 = 100
    roi.x1 = 200
    roi.y1 = 200
    roiVector.push_back(roi)
    dataInput.roiBoxs = roiVector
    """

    # Inputs data to a specified stream based on streamName.
    streamName = b'classification'
    inPluginId = 0
    uniqueId = streamManagerApi.SendDataWithUniqueId(streamName, inPluginId, dataInput)
    if uniqueId < 0:
        print("Failed to send data to stream.")
        exit()

    # Obtain the inference result by specifying streamName and uniqueId.
    inferResult = streamManagerApi.GetResultWithUniqueId(streamName, uniqueId, 3000)
    if inferResult.errorCode != 0:
        print("GetResultWithUniqueId error. errorCode=%d, errorMsg=%s" % (
            inferResult.errorCode, inferResult.data.decode()))
        exit()

    # print the infer result
    print(inferResult.data.decode())

    # destroy streams
    streamManagerApi.DestroyAllStreams()

本来想一次性写完的,奈何装CANN的驱动装了一个礼拜,各种内核版本不匹配,国产AI硬件任重道远...

相关推荐
Byron Loong1 小时前
【机器视觉】人物安全距离监测
python·yolo·计算机视觉
那雨倾城3 小时前
YOLO + MediaPipe 在PiscCode上解决多脸 Landmark 中「人脸数量固定」的问题
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
山梨一碗粥7 小时前
YOLO的发展
yolo
零小陈上(shouhou6668889)8 小时前
西红柿叶病害检测(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)
开发语言·python·yolo
吴佳浩 Alben9 小时前
Python入门指南(七) - YOLO检测API进阶实战
开发语言·python·yolo
Coding茶水间21 小时前
基于深度学习的学生上课行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
那雨倾城1 天前
PiscCode实现用 YOLO 给现实世界加上「NPC 血条 HUD」
图像处理·python·算法·yolo·计算机视觉·目标跟踪
Blossom.1181 天前
AI边缘计算实战:基于MNN框架的手机端文生图引擎实现
人工智能·深度学习·yolo·目标检测·智能手机·边缘计算·mnn
牙牙要健康1 天前
【YOLO-Ultralytics】【数据集配置】【v8.3.235版本】 数据集配置文件详细解析
yolo