基于yolov5的番茄成熟度检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

yolov5 番茄成熟度检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili

(一)简介

基于 YOLOv5 的番茄成熟度检测系统是在 PyTorch 框架之下得以实现的。这是一个完备的项目,涵盖了诸多方面,其中包括代码部分,精心整理的数据集,训练完备的模型权重,详实的模型训练记录,直观友好的 UI 界面以及各类重要的模型指标(如准确率、精确率、召回率等等)。

该系统的 UI 界面是通过 tkinter 设计并成功实现的。该项目可在windows、linux(ubuntu,centos)、mac系统下运行,可外接usb摄像头或直接用笔记本摄像头实现摄像实时检测。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

windows保姆级的pycharm+anaconda搭建python虚拟环境_anaconda和pycharm保姆级下载及配置-CSDN博客

在Linux系统(Ubuntn, Centos)用pycharm+anaconda搭建python虚拟环境_linux pycharm-CSDN博客

(二)项目介绍

1. 项目结构
2.模型训练、验证

​该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:修改data/data.yaml中的数据集路径

第二步:模型训练,即运行train.py文件

第三步:模型验证,当模型训练完后,运行val.py文件

第四步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集

​​​

部分数据展示:

​​

3.GUI界面(技术栈:pyqt5+python)
a.GUI初始界面

​​​

b.图像检测界面
c.视频或摄像实时检测界面

4.模型训练和验证的一些指标及效果

(三)总结

以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标等 。

整个项目包含全部资料,一步到位,省心省力

若项目使用过程中出现问题,请及时交流!

相关推荐
温暖名字8 分钟前
调用qwen3-omni的api对本地文件生成视频文本描述(批量生成)
python·音视频·qwen·qa问答
一眼万里*e1 小时前
搭建个人知识库
python
程序员小远2 小时前
软件测试之bug分析定位技巧
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·bug
江上清风山间明月2 小时前
Android 系统中进程和线程的区别
android·python·线程·进程
mit6.8242 小时前
[LivePortrait] docs | Gradio用户界面
python
未来之窗软件服务2 小时前
幽冥大陆(十七)手机摄像头注册到电脑——东方仙盟炼气期
服务器·智能手机·电脑·服务器运维·东方仙盟·东方仙盟sdk
听风吟丶3 小时前
Java 函数式编程深度实战:从 Lambda 到 Stream API 的工程化落地
开发语言·python
饮长安千年月4 小时前
玄机-第八章 内存马分析-java03-fastjson
开发语言·python·安全·web安全·网络安全·应急响应
天天爱吃肉82184 小时前
新能源汽车动力系统在环(HIL)半实物仿真测试台架深度解析
人工智能·python·嵌入式硬件·汽车
卡次卡次14 小时前
注意点:挂载与插硬盘,容器挂载实现持久化存储
python