yolov8目标检测如何设置背景/无标签图像参与训练

背景

在开发深度学习模型的时候,总有一些图像会造成误检,这时候就需要将这些误检的图像不进行标注加入训练,让模型知道这里是一个不需要检测的"背景",减少模型的误检率。

而在网上搜了一大堆之后,发现并没有单独介绍这方面的文章,因此在这里做一个简单的文章进行介绍。

1、yolov8的数据集加载逻辑

第一步:首先通过图像路径得到所有图像的绝对文件路径列表

第二步:再通过img2label_paths这个函数将图像路径转换为标签文件路径,感兴趣的可以再去看看这个函数,所以这里需要划重点!!!,yolov8不是靠给定的标签文件路径去寻找标签文件,而是将图像文件路径转换为标签路径

第三步:通过一个进程池和verify_image_label函数将所有 的标签文件加载到内存里

点进这个函数,我把标签文件存在的加载代码折叠了,只看标签文件不存在时的的代码,可以发现这里将nm置为了1.,也就是不存在标签,这个只作为一个计数使用。重点是下面这一行。对于没有标签的图像,yolov8生成了一个空白的标签,并且将这个空白标签作为真实的标签进行训练

总结

yolov8将背景图像加入训练,不是生成一个空白的标签文件,而是将背景图像直接放入训练集即可

相关推荐
好奇龙猫14 分钟前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)22 分钟前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan23 分钟前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维29 分钟前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS32 分钟前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd1 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟1 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~2 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1
岁月宁静2 小时前
当 AI 越来越“聪明”,人类真正的护城河是什么:智商、意识与认知主权
人工智能