yolov8目标检测如何设置背景/无标签图像参与训练

背景

在开发深度学习模型的时候,总有一些图像会造成误检,这时候就需要将这些误检的图像不进行标注加入训练,让模型知道这里是一个不需要检测的"背景",减少模型的误检率。

而在网上搜了一大堆之后,发现并没有单独介绍这方面的文章,因此在这里做一个简单的文章进行介绍。

1、yolov8的数据集加载逻辑

第一步:首先通过图像路径得到所有图像的绝对文件路径列表

第二步:再通过img2label_paths这个函数将图像路径转换为标签文件路径,感兴趣的可以再去看看这个函数,所以这里需要划重点!!!,yolov8不是靠给定的标签文件路径去寻找标签文件,而是将图像文件路径转换为标签路径

第三步:通过一个进程池和verify_image_label函数将所有 的标签文件加载到内存里

点进这个函数,我把标签文件存在的加载代码折叠了,只看标签文件不存在时的的代码,可以发现这里将nm置为了1.,也就是不存在标签,这个只作为一个计数使用。重点是下面这一行。对于没有标签的图像,yolov8生成了一个空白的标签,并且将这个空白标签作为真实的标签进行训练

总结

yolov8将背景图像加入训练,不是生成一个空白的标签文件,而是将背景图像直接放入训练集即可

相关推荐
猿小猴子28 分钟前
主流 AI IDE 之一的 Windsurf 介绍
ide·人工智能
智联视频超融合平台41 分钟前
无人机+AI视频联网:精准狙击,让‘罪恶之花’无处藏身
人工智能·网络协议·安全·系统安全·音视频·无人机
AiTEN_Robotics1 小时前
智能仓储落地:机器人如何通过自动化减少仓库操作失误?
人工智能·机器人·自动化
江湖有缘2 小时前
华为云Flexus+DeepSeek征文 | 初探华为云ModelArts Studio:部署DeepSeek-V3/R1商用服务的详细步骤
人工智能·华为云·modelarts
Vizio<2 小时前
基于FashionMnist数据集的自监督学习(生成式自监督学习AE算法)
人工智能·笔记·深度学习·神经网络·自监督学习
梅一一2 小时前
5款AI对决:Gemini学术封神,但日常办公我选它
大数据·人工智能·数据可视化
kyle~2 小时前
Pytorch---ImageFolder
人工智能·pytorch·python
商业数据派2 小时前
4000万日订单背后,饿了么再掀即时零售的“效率革命”
人工智能
逻辑02 小时前
从认识AI开始-----解密门控循环单元(GRU):对LSTM的再优化
人工智能·gru·lstm
苏苏susuus3 小时前
机器学习:欠拟合、过拟合、正则化
人工智能·机器学习