yolov8目标检测如何设置背景/无标签图像参与训练

背景

在开发深度学习模型的时候,总有一些图像会造成误检,这时候就需要将这些误检的图像不进行标注加入训练,让模型知道这里是一个不需要检测的"背景",减少模型的误检率。

而在网上搜了一大堆之后,发现并没有单独介绍这方面的文章,因此在这里做一个简单的文章进行介绍。

1、yolov8的数据集加载逻辑

第一步:首先通过图像路径得到所有图像的绝对文件路径列表

第二步:再通过img2label_paths这个函数将图像路径转换为标签文件路径,感兴趣的可以再去看看这个函数,所以这里需要划重点!!!,yolov8不是靠给定的标签文件路径去寻找标签文件,而是将图像文件路径转换为标签路径

第三步:通过一个进程池和verify_image_label函数将所有 的标签文件加载到内存里

点进这个函数,我把标签文件存在的加载代码折叠了,只看标签文件不存在时的的代码,可以发现这里将nm置为了1.,也就是不存在标签,这个只作为一个计数使用。重点是下面这一行。对于没有标签的图像,yolov8生成了一个空白的标签,并且将这个空白标签作为真实的标签进行训练

总结

yolov8将背景图像加入训练,不是生成一个空白的标签文件,而是将背景图像直接放入训练集即可

相关推荐
小锋学长生活大爆炸2 分钟前
【软件】AI Agent:无需电脑的手机自动化助手AutoGLM
运维·人工智能·智能手机·自动化·手机·agent·autoglm
ar01232 分钟前
AR巡检私有化本地化部署:企业数字化转型的关键一步
人工智能·ar
Hcoco_me5 分钟前
大模型面试题39:KV Cache 完全指南
人工智能·深度学习·自然语言处理·transformer·word2vec
小途软件6 分钟前
基于计算机视觉的课堂行为编码研究
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·django
小途软件7 分钟前
基于计算机视觉的桥梁索力测试方法
人工智能·python·语言模型·自然语言处理·django
拓端研究室7 分钟前
2025医疗人工智能报告:AI应用、IVD市场、健康科技|附240+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·物联网
咚咚王者8 分钟前
人工智能之核心基础 机器学习 第七章 监督学习总结
人工智能·学习·机器学习
2501_941507948 分钟前
【人工智能】基于YOLO11-C3k2-LFE模型的LED灯目标检测与识别系统研究
人工智能·目标检测·计算机视觉
不爱学英文的码字机器9 分钟前
用 openJiuwen 构建 AI Agent:从 Hello World 到毒舌编辑器
人工智能·redis·编辑器
数据光子9 分钟前
【YOLO数据集】水稻病害目标检测
人工智能·yolo·目标检测·计算机视觉