yolov8目标检测如何设置背景/无标签图像参与训练

背景

在开发深度学习模型的时候,总有一些图像会造成误检,这时候就需要将这些误检的图像不进行标注加入训练,让模型知道这里是一个不需要检测的"背景",减少模型的误检率。

而在网上搜了一大堆之后,发现并没有单独介绍这方面的文章,因此在这里做一个简单的文章进行介绍。

1、yolov8的数据集加载逻辑

第一步:首先通过图像路径得到所有图像的绝对文件路径列表

第二步:再通过img2label_paths这个函数将图像路径转换为标签文件路径,感兴趣的可以再去看看这个函数,所以这里需要划重点!!!,yolov8不是靠给定的标签文件路径去寻找标签文件,而是将图像文件路径转换为标签路径

第三步:通过一个进程池和verify_image_label函数将所有 的标签文件加载到内存里

点进这个函数,我把标签文件存在的加载代码折叠了,只看标签文件不存在时的的代码,可以发现这里将nm置为了1.,也就是不存在标签,这个只作为一个计数使用。重点是下面这一行。对于没有标签的图像,yolov8生成了一个空白的标签,并且将这个空白标签作为真实的标签进行训练

总结

yolov8将背景图像加入训练,不是生成一个空白的标签文件,而是将背景图像直接放入训练集即可

相关推荐
week_泽1 分钟前
1、OpenCV 特征检测入门笔记
人工智能·笔记·opencv
车队老哥记录生活10 分钟前
强化学习 RL 基础 3:随机近似方法 | 梯度下降
人工智能·算法·机器学习·强化学习
线束线缆组件品替网18 分钟前
工业防水接口标准解析:Amphenol CONEC 圆形线缆技术详解
人工智能·汽车·电脑·硬件工程·材料工程
熬夜敲代码的小N21 分钟前
2026 职场生存白皮书:Gemini Pro 实战使用指南
人工智能·python·ai·职场和发展
独自归家的兔23 分钟前
AI 原生应用开发框架深度解析:从单智能体到多智能体协同开发
人工智能
ArkAPI25 分钟前
腾讯AI基础设施的系统论:从推理框架的算子融合到智能体的任务分解
人工智能·ai·google·aigc·腾讯·多模态处理·arkapi
Godspeed Zhao29 分钟前
自动驾驶中的传感器技术83——Sensor Fusion(6)
人工智能·机器学习·自动驾驶
semantist@语校33 分钟前
第五十八篇|从城市节律到制度密度:近畿日本语学院的数据建模与关西语校结构工程
大数据·服务器·数据库·人工智能·百度·ai·知识图谱
风途知识百科34 分钟前
扼流圈GNSS监测站
人工智能
阿里云大数据AI技术39 分钟前
阿里云 PAI 团队获邀在 ChinaSys 2025 分享动态数据调度方案 Skrull
人工智能·阿里云·pai·chinasys