DataFrame窗口函数操作

文章最前 : 我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。

相关文章:

  1. PySpark 概述
  2. Spark连接快速入门
  3. Spark上使用pandas API快速入门

创建pyspark对象

python 复制代码
import warnings
warnings.filterwarnings('ignore')
#import pandas as pd
#import numpy as np
from datetime import timedelta, date, datetime
import time
import gc
import os
import argparse                             
import sys

from pyspark.sql import SparkSession, functions as fn
from pyspark.ml.feature import StringIndexer
from pyspark.ml.recommendation import ALS
from pyspark.sql.types import *
from pyspark import StorageLevel
spark = SparkSession \
        .builder \
        .appName("stockout_test") \
        .config("hive.exec.dynamic.partition.mode", "nonstrict") \
        .config("spark.sql.sources.partitionOverwriteMode", "dynamic")\
        .config("spark.driver.memory", '20g')\
        .config("spark.executor.memory", '40g')\
        .config("spark.yarn.executor.memoryOverhead", '1g')\
        .config("spark.executor.instances", 8)\
        .config("spark.executor.cores", 8)\
        .config("spark.kryoserializer.buffer.max", '128m')\
        .config("spark.yarn.queue", 'root.algo')\
        .config("spark.executorEnv.OMP_NUM_THREADS", 12)\
        .config("spark.executorEnv.ARROW_PRE_0_15_IPC_FORMAT", 1) \
        .config("spark.default.parallelism", 800)\
        .enableHiveSupport() \
        .getOrCreate()
spark.sql("set hive.exec.dynamic.partition.mode = nonstrict")
spark.sql("set hive.exec.dynamic.partition=true")
spark.sql("set spark.sql.autoBroadcastJoinThreshold=-1")

创建DataFrame

python 复制代码
employee_salary = [
    ("zhangsan", "IT", 8000),
    ("lisi", "IT", 7000),
    ("wangwu", "IT", 7500),
    ("zhaoliu", "ALGO", 10000),
    ("qisan", "IT", 8000),
    ("bajiu", "ALGO", 12000),
    ("james", "ALGO", 11000),
    ("wangzai", "INCREASE", 7000),
    ("carter", "INCREASE", 8000),
    ("kobe", "IT", 9000)]
 
columns= ["name", "department", "salary"]
df = spark.createDataFrame(data = employee_salary, schema = columns)
df.show()
复制代码
+--------+----------+------+
|    name|department|salary|
+--------+----------+------+
|zhangsan|        IT|  8000|
|    lisi|        IT|  7000|
|  wangwu|        IT|  7500|
| zhaoliu|      ALGO| 10000|
|   qisan|        IT|  8000|
|   bajiu|      ALGO| 12000|
|   james|      ALGO| 11000|
| wangzai|  INCREASE|  7000|
|  carter|  INCREASE|  8000|
|    kobe|        IT|  9000|
+--------+----------+------+

row_number()

python 复制代码
from pyspark.sql.window import Window
import pyspark.sql.functions as F
 
windowSpec  = Window.partitionBy("department").orderBy(F.desc("salary"))
df.withColumn("row_number", F.row_number().over(windowSpec)).show(truncate=False)
复制代码
+--------+----------+------+----------+
|name    |department|salary|row_number|
+--------+----------+------+----------+
|carter  |INCREASE  |8000  |1         |
|wangzai |INCREASE  |7000  |2         |
|kobe    |IT        |9000  |1         |
|zhangsan|IT        |8000  |2         |
|qisan   |IT        |8000  |3         |
|wangwu  |IT        |7500  |4         |
|lisi    |IT        |7000  |5         |
|bajiu   |ALGO      |12000 |1         |
|james   |ALGO      |11000 |2         |
|zhaoliu |ALGO      |10000 |3         |
+--------+----------+------+----------+

Rank()

python 复制代码
from pyspark.sql.window import Window
import pyspark.sql.functions as F
 
windowSpec  = Window.partitionBy("department").orderBy(F.desc("salary"))
df.withColumn("rank",F.rank().over(windowSpec)).show(truncate=False)
复制代码
+--------+----------+------+----+
|name    |department|salary|rank|
+--------+----------+------+----+
|carter  |INCREASE  |8000  |1   |
|wangzai |INCREASE  |7000  |2   |
|kobe    |IT        |9000  |1   |
|qisan   |IT        |8000  |2   |
|zhangsan|IT        |8000  |2   |
|wangwu  |IT        |7500  |4   |
|lisi    |IT        |7000  |5   |
|bajiu   |ALGO      |12000 |1   |
|james   |ALGO      |11000 |2   |
|zhaoliu |ALGO      |10000 |3   |
+--------+----------+------+----+

dense_rank()

python 复制代码
from pyspark.sql.window import Window
import pyspark.sql.functions as F
 
windowSpec  = Window.partitionBy("department").orderBy(F.desc("salary"))
df.withColumn("dense_rank",F.dense_rank().over(windowSpec)).show()
复制代码
+--------+----------+------+----------+
|    name|department|salary|dense_rank|
+--------+----------+------+----------+
|  carter|  INCREASE|  8000|         1|
| wangzai|  INCREASE|  7000|         2|
|    kobe|        IT|  9000|         1|
|   qisan|        IT|  8000|         2|
|zhangsan|        IT|  8000|         2|
|  wangwu|        IT|  7500|         3|
|    lisi|        IT|  7000|         4|
|   bajiu|      ALGO| 12000|         1|
|   james|      ALGO| 11000|         2|
| zhaoliu|      ALGO| 10000|         3|
+--------+----------+------+----------+

lag()

python 复制代码
from pyspark.sql.window import Window
import pyspark.sql.functions as F
 
windowSpec  = Window.partitionBy("department").orderBy(F.desc("salary"))
df.withColumn("lag",F.lag("salary",1).over(windowSpec)).show()
复制代码
+--------+----------+------+-----+
|    name|department|salary|  lag|
+--------+----------+------+-----+
|  carter|  INCREASE|  8000| null|
| wangzai|  INCREASE|  7000| 8000|
|    kobe|        IT|  9000| null|
|zhangsan|        IT|  8000| 9000|
|   qisan|        IT|  8000| 8000|
|  wangwu|        IT|  7500| 8000|
|    lisi|        IT|  7000| 7500|
|   bajiu|      ALGO| 12000| null|
|   james|      ALGO| 11000|12000|
| zhaoliu|      ALGO| 10000|11000|
+--------+----------+------+-----+

lead()

python 复制代码
from pyspark.sql.window import Window
import pyspark.sql.functions as F
 
windowSpec  = Window.partitionBy("department").orderBy(F.desc("salary"))
df.withColumn("lead",F.lead("salary", 1).over(windowSpec)).show()
复制代码
+--------+----------+------+-----+
|    name|department|salary| lead|
+--------+----------+------+-----+
|  carter|  INCREASE|  8000| 7000|
| wangzai|  INCREASE|  7000| null|
|    kobe|        IT|  9000| 8000|
|zhangsan|        IT|  8000| 8000|
|   qisan|        IT|  8000| 7500|
|  wangwu|        IT|  7500| 7000|
|    lisi|        IT|  7000| null|
|   bajiu|      ALGO| 12000|11000|
|   james|      ALGO| 11000|10000|
| zhaoliu|      ALGO| 10000| null|
+--------+----------+------+-----+

Aggregate Functions

python 复制代码
from pyspark.sql.window import Window
import pyspark.sql.functions as F
 
windowSpec  = Window.partitionBy("department").orderBy(F.desc("salary"))
windowSpecAgg  = Window.partitionBy("department")
 
df.withColumn("row", F.row_number().over(windowSpec)) \
  .withColumn("avg", F.avg("salary").over(windowSpecAgg)) \
  .withColumn("sum", F.sum("salary").over(windowSpecAgg)) \
  .withColumn("min", F.min("salary").over(windowSpecAgg)) \
  .withColumn("max", F.max("salary").over(windowSpecAgg)) \
  .withColumn("count", F.count("salary").over(windowSpecAgg)) \
  .withColumn("distinct_count", F.approx_count_distinct("salary").over(windowSpecAgg)) \
  .show()
复制代码
+--------+----------+------+---+-------+-----+-----+-----+-----+--------------+
|    name|department|salary|row|    avg|  sum|  min|  max|count|distinct_count|
+--------+----------+------+---+-------+-----+-----+-----+-----+--------------+
|  carter|  INCREASE|  8000|  1| 7500.0|15000| 7000| 8000|    2|             2|
| wangzai|  INCREASE|  7000|  2| 7500.0|15000| 7000| 8000|    2|             2|
|    kobe|        IT|  9000|  1| 7900.0|39500| 7000| 9000|    5|             4|
|zhangsan|        IT|  8000|  2| 7900.0|39500| 7000| 9000|    5|             4|
|   qisan|        IT|  8000|  3| 7900.0|39500| 7000| 9000|    5|             4|
|  wangwu|        IT|  7500|  4| 7900.0|39500| 7000| 9000|    5|             4|
|    lisi|        IT|  7000|  5| 7900.0|39500| 7000| 9000|    5|             4|
|   bajiu|      ALGO| 12000|  1|11000.0|33000|10000|12000|    3|             3|
|   james|      ALGO| 11000|  2|11000.0|33000|10000|12000|    3|             3|
| zhaoliu|      ALGO| 10000|  3|11000.0|33000|10000|12000|    3|             3|
+--------+----------+------+---+-------+-----+-----+-----+-----+--------------+
python 复制代码
from pyspark.sql.window import Window
import pyspark.sql.functions as F
# 需要注意的是 approx_count_distinct() 函数适用于窗函数的统计,
# 而在groupby中通常用countDistinct()来代替该函数,用来求组内不重复的数值的条数。
# approx_count_distinct()取的是近似的数值,不太准确,使用需注意 

windowSpec  = Window.partitionBy("department").orderBy(F.desc("salary"))
windowSpecAgg  = Window.partitionBy("department")
 
df.withColumn("row", F.row_number().over(windowSpec)) \
  .withColumn("avg", F.avg("salary").over(windowSpecAgg)) \
  .withColumn("sum", F.sum("salary").over(windowSpecAgg)) \
  .withColumn("min", F.min("salary").over(windowSpecAgg)) \
  .withColumn("max", F.max("salary").over(windowSpecAgg)) \
  .withColumn("count", F.count("salary").over(windowSpecAgg)) \
  .withColumn("distinct_count", F.approx_count_distinct("salary").over(windowSpecAgg)) \
  .where(F.col("row")==1).select("department","avg","sum","min","max","count","distinct_count") \
  .show()

+----------+-------+-----+-----+-----+-----+--------------+ |department| avg| sum| min| max|count|distinct_count| +----------+-------+-----+-----+-----+-----+--------------+ | INCREASE| 7500.0|15000| 7000| 8000| 2| 2| | IT| 7900.0|39500| 7000| 9000| 5| 4| | ALGO|11000.0|33000|10000|12000| 3| 3| +----------+-------+-----+-----+-----+-----+--------------+

相关推荐
lucky_syq5 小时前
Spark算子:大数据处理的魔法棒
大数据·分布式·spark
D愿你归来仍是少年8 小时前
解决Python升级导致PySpark任务异常方案
大数据·开发语言·python·spark
weixin_307779139 小时前
PySpark检查两个DataFrame的数据是否一致
大数据·spark·pandas
人类群星闪耀时14 小时前
数据湖与数据仓库:初学者的指南
大数据·数据仓库·spark
Java资深爱好者17 小时前
如何使用Spark SQL进行复杂的数据查询和分析
大数据·sql·spark
赵渝强老师17 小时前
【赵渝强老师】Spark RDD的缓存机制
大数据·缓存·spark
anqi2719 小时前
Linux 的基本命令
linux·开发语言·后端·spark
宅小海1 天前
spark
分布式·spark
python资深爱好者2 天前
如何优化Spark作业的性能
大数据·分布式·spark
阿湯哥3 天前
数据仓库、数据湖和数据湖仓
大数据·数据仓库·spark