notes_NLP

RNN > LSTM, GRU

model 特点
RNN
LSTM input+forget+putput;
GRU reset+update;参数比LSTM少,计算效率更高;

循环神经网络(RNN/LSTM/GRU)
人人都能看懂的GRU

transformer > self-attention

  1. 根据Query和Key计算权重系数
    1.1 根据Query和Key计算两者的相似性或者相关性
    1.2 对第一阶段的原始分值进行归一化处理
  2. 根据权重系数对Value进行加权求和

Transformerattention机制和LSTMgate机制都通过加权方法控制了信息的流动;当前时刻的输出依赖于历史(单向模型)或者历史和未来的信息(双向模型)。

不同点:

model attention gate
激活函数 sigmoid softmax
操作对象 全局 元素
可作用范围 any 有限

Attention weights和LSTM/GRU中的gate机制有何不同?
超详细图解Self-Attention
熬了一晚上,我从零实现了Transformer模型,把代码讲给你听

预训练语言模型

预训练 :在模型参数初始化时使用已经在一些任务上预先训练完的、而非随机的参数。在后续具体任务上,可以冻结(fronzen)微调(fine-tune)参数。

预训练语言模型 :在以word2vec(2013)为代表的第一代预训练语言模型中,一个单词的词向量是固定不变的,无法区分单词的不同语义。ELMo(2018)考虑了上下文的信息,较好地解决了多义词的表示问题,开启了第二代预训练语言模型的时代,即预训练+微调的范式。

自回归模型 可以类比为早期的统计语言模型,也就是根据上文预测下一个单词,或者根据下文预测前面的单词。包括ELMoGPTXLNet等。
自编码模型 可以在输入中随机掩盖一个单词(相当于噪声),在预训练过程中,根据上下文预测被掩码词,因此可以认为是一个降噪(denosing)的过程。包括BERTERINERoBERTa等。

MLM (Masked Language Modeling) 是一种预训练语言模型的方法,通过在输入文本中随机掩盖一些单词或标记,并要求模型预测这些掩盖的单词或标记。主要目的是训练模型来学习上下文信息,以便在预测掩盖的单词或标记时提高准确性。

一文了解预训练语言模型!
预训练模型与10种常见NLP预训练模型
Masked Language Modeling

ProtBERT

... ...

相关推荐
西猫雷婶17 小时前
CNN卷积计算
人工智能·神经网络·cnn
格林威19 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
倔强青铜三19 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
B站计算机毕业设计之家20 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
高工智能汽车20 小时前
棱镜观察|极氪销量遇阻?千里智驾左手服务吉利、右手对标华为
人工智能·华为
txwtech20 小时前
第6篇 OpenCV RotatedRect如何判断矩形的角度
人工智能·opencv·计算机视觉
正牌强哥20 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare
倔强青铜三20 小时前
苦练Python第62天:零基础玩转CSV文件读写,csv模块实战
人工智能·python·面试
大模型真好玩21 小时前
低代码Agent开发框架使用指南(二)—Coze平台核心功能概览
人工智能·coze·deepseek
jerryinwuhan21 小时前
最短路径问题总结
开发语言·人工智能·python