notes_NLP

RNN > LSTM, GRU

model 特点
RNN
LSTM input+forget+putput;
GRU reset+update;参数比LSTM少,计算效率更高;

循环神经网络(RNN/LSTM/GRU)
人人都能看懂的GRU

transformer > self-attention

  1. 根据Query和Key计算权重系数
    1.1 根据Query和Key计算两者的相似性或者相关性
    1.2 对第一阶段的原始分值进行归一化处理
  2. 根据权重系数对Value进行加权求和

Transformerattention机制和LSTMgate机制都通过加权方法控制了信息的流动;当前时刻的输出依赖于历史(单向模型)或者历史和未来的信息(双向模型)。

不同点:

model attention gate
激活函数 sigmoid softmax
操作对象 全局 元素
可作用范围 any 有限

Attention weights和LSTM/GRU中的gate机制有何不同?
超详细图解Self-Attention
熬了一晚上,我从零实现了Transformer模型,把代码讲给你听

预训练语言模型

预训练 :在模型参数初始化时使用已经在一些任务上预先训练完的、而非随机的参数。在后续具体任务上,可以冻结(fronzen)微调(fine-tune)参数。

预训练语言模型 :在以word2vec(2013)为代表的第一代预训练语言模型中,一个单词的词向量是固定不变的,无法区分单词的不同语义。ELMo(2018)考虑了上下文的信息,较好地解决了多义词的表示问题,开启了第二代预训练语言模型的时代,即预训练+微调的范式。

自回归模型 可以类比为早期的统计语言模型,也就是根据上文预测下一个单词,或者根据下文预测前面的单词。包括ELMoGPTXLNet等。
自编码模型 可以在输入中随机掩盖一个单词(相当于噪声),在预训练过程中,根据上下文预测被掩码词,因此可以认为是一个降噪(denosing)的过程。包括BERTERINERoBERTa等。

MLM (Masked Language Modeling) 是一种预训练语言模型的方法,通过在输入文本中随机掩盖一些单词或标记,并要求模型预测这些掩盖的单词或标记。主要目的是训练模型来学习上下文信息,以便在预测掩盖的单词或标记时提高准确性。

一文了解预训练语言模型!
预训练模型与10种常见NLP预训练模型
Masked Language Modeling

ProtBERT

... ...

相关推荐
北京地铁1号线21 分钟前
Qwen-VL(阿里通义千问视觉语言模型)模型架构和损失函数介绍
人工智能·语言模型·自然语言处理
阿豪330 分钟前
2025 年职场转行突围:除实习外,这些硬核证书让你的简历脱颖而出(纯经验分享)
大数据·人工智能·经验分享·科技·信息可视化·产品经理
阿杜杜不是阿木木33 分钟前
开始 ComfyUI 的 AI 绘图之旅-Stable Diffusion图生图之局部重绘(Inpaint)和扩图(Outpaint)(三)
人工智能·ai·ai作画·aigc·图生图
阿杜杜不是阿木木38 分钟前
开始 ComfyUI 的 AI 绘图之旅-Stable Diffusion图生图(二)
人工智能·ai·ai作画·aigc·图生图
九章云极AladdinEdu1 小时前
存算一体芯片生态评估:从三星PIM到知存科技WTM2101
人工智能·pytorch·科技·架构·开源·gpu算力
张驰课堂1 小时前
老树发新芽:六西格玛培训为石油机械制造注入持久活力
大数据·人工智能·制造
和光同尘@1 小时前
66. 加一 (编程基础0到1)(Leetcode)
数据结构·人工智能·算法·leetcode·职场和发展
飞哥数智坊1 小时前
放弃 Cursor 后,我又试了 CodeBuddy,感觉国产又行了
人工智能·codebuddy
新智元2 小时前
世界首富换人!81 岁硅谷狂人 4000 亿身价碾压马斯克,33 岁华裔才女逆袭
人工智能·openai