C++快速幂(递归)

文章目录

C++快速幂

题目描述

LCR 134. Pow(x, n) - 力扣(LeetCode)

解题思路

借用递归的思路实现pow函数:

首先我们来举两个例子:

偶数:

2 16 2^{16} 216---> 2 8 2 ^ 8 28 * 2 8 2 ^ 8 28 | 2 8 2 ^ 8 28 ---> 2 4 2 ^ 4 24 * 2 4 2 ^ 4 24 | 2 4 2 ^ 4 24 ---> 2 2 2 ^ 2 22 * 2 2 2 ^ 2 22 | 2 2 2 ^ 2 22 ---> 2 * 2

奇数:

2 21 2 ^{21} 221---> 2 10 2 ^ {10} 210 * 2 10 2^{10} 210 * 2 2 2 | 2 10 2 ^{10} 210 ---> 2 5 2 ^ {5} 25 * 2 5 2 ^ 5 25 | 2 5 2 ^ 5 25 ---> 2 2 2 ^ 2 22 * 2 2 2^2 22 * 2 | 2 2 2 ^ 2 22 ---> 2 2 2 * 2 2 2;

从上面的例子我们也可以看出一个共同的子问题:

如果我们要计算 x n x ^ n xn 那么我们先计算 x n / 2 x ^ {n / 2} xn/2, 通过这样的方法我们就可以将计算n次方的时间复杂度降到 l o g 2 n log _2 ^ n log2n

那么答题思路就是如上所示。

细节:

当n = − 2 31 -2 ^ {31} −231的时候我们将它转成正数会越界,所以我们在转化之前将它转成longlong即可解决;

代码

cpp 复制代码
class Solution {
public:
    double myPow(double x, int n) 
    {
        return n < 0 ? 1.0 / pow(x, -(long long)n) : pow(x, n);
    }

    double pow(double x, long long n)
    {
        if(n == 0) return 1;
        double tmp = pow(x, n / 2);
        return n % 2 == 0 ? tmp * tmp : tmp * tmp * x;
    }
};

复杂度分析

时间复杂度:

采用了快速幂的算法思路我们只需要O( l o g n log^n logn)的复杂度即可解决问题;

空间复杂度:

每次递归中都声明了一个临时变量tmp,所以空间复杂度是O( l o g n log ^ n logn);

相关推荐
咖啡里的茶i几秒前
Vehicle友元Date多态Sedan和Truck
c++
海绵波波1077 分钟前
Webserver(4.9)本地套接字的通信
c++
@小博的博客13 分钟前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习
爱吃喵的鲤鱼1 小时前
linux进程的状态之环境变量
linux·运维·服务器·开发语言·c++
7年老菜鸡2 小时前
策略模式(C++)三分钟读懂
c++·qt·策略模式
Ni-Guvara2 小时前
函数对象笔记
c++·算法
似霰2 小时前
安卓智能指针sp、wp、RefBase浅析
android·c++·binder
芊寻(嵌入式)2 小时前
C转C++学习笔记--基础知识摘录总结
开发语言·c++·笔记·学习
獨枭2 小时前
C++ 项目中使用 .dll 和 .def 文件的操作指南
c++
霁月风2 小时前
设计模式——观察者模式
c++·观察者模式·设计模式