C++快速幂(递归)

文章目录

C++快速幂

题目描述

LCR 134. Pow(x, n) - 力扣(LeetCode)

解题思路

借用递归的思路实现pow函数:

首先我们来举两个例子:

偶数:

2 16 2^{16} 216---> 2 8 2 ^ 8 28 * 2 8 2 ^ 8 28 | 2 8 2 ^ 8 28 ---> 2 4 2 ^ 4 24 * 2 4 2 ^ 4 24 | 2 4 2 ^ 4 24 ---> 2 2 2 ^ 2 22 * 2 2 2 ^ 2 22 | 2 2 2 ^ 2 22 ---> 2 * 2

奇数:

2 21 2 ^{21} 221---> 2 10 2 ^ {10} 210 * 2 10 2^{10} 210 * 2 2 2 | 2 10 2 ^{10} 210 ---> 2 5 2 ^ {5} 25 * 2 5 2 ^ 5 25 | 2 5 2 ^ 5 25 ---> 2 2 2 ^ 2 22 * 2 2 2^2 22 * 2 | 2 2 2 ^ 2 22 ---> 2 2 2 * 2 2 2;

从上面的例子我们也可以看出一个共同的子问题:

如果我们要计算 x n x ^ n xn 那么我们先计算 x n / 2 x ^ {n / 2} xn/2, 通过这样的方法我们就可以将计算n次方的时间复杂度降到 l o g 2 n log _2 ^ n log2n

那么答题思路就是如上所示。

细节:

当n = − 2 31 -2 ^ {31} −231的时候我们将它转成正数会越界,所以我们在转化之前将它转成longlong即可解决;

代码

cpp 复制代码
class Solution {
public:
    double myPow(double x, int n) 
    {
        return n < 0 ? 1.0 / pow(x, -(long long)n) : pow(x, n);
    }

    double pow(double x, long long n)
    {
        if(n == 0) return 1;
        double tmp = pow(x, n / 2);
        return n % 2 == 0 ? tmp * tmp : tmp * tmp * x;
    }
};

复杂度分析

时间复杂度:

采用了快速幂的算法思路我们只需要O( l o g n log^n logn)的复杂度即可解决问题;

空间复杂度:

每次递归中都声明了一个临时变量tmp,所以空间复杂度是O( l o g n log ^ n logn);

相关推荐
序属秋秋秋39 分钟前
《C++初阶之内存管理》【内存分布 + operator new/delete + 定位new】
开发语言·c++·笔记·学习
十秒耿直拆包选手8 小时前
Qt:主窗体(QMainwindow)初始化注意事项
c++·qt
霖0010 小时前
C++学习笔记三
运维·开发语言·c++·笔记·学习·fpga开发
mit6.82410 小时前
[shad-PS4] Vulkan渲染器 | 着色器_重新编译器 | SPIR-V 格式
c++·游戏引擎·ps4
tan77º11 小时前
【Linux网络编程】Socket - TCP
linux·网络·c++·tcp/ip
Mike_Zhang12 小时前
C++使用WinHTTP访问http/https服务
c++
CHANG_THE_WORLD12 小时前
「macOS 系统字体收集器 (C++17 实现)」
开发语言·c++·macos
GiraKoo12 小时前
【GiraKoo】Breakpad 崩溃分析系统
c++
妄想出头的工业炼药师13 小时前
python和C++相互调用使用
开发语言·c++
景彡先生13 小时前
C++17 并行算法:std::execution::par
开发语言·c++