C++快速幂(递归)

文章目录

C++快速幂

题目描述

LCR 134. Pow(x, n) - 力扣(LeetCode)

解题思路

借用递归的思路实现pow函数:

首先我们来举两个例子:

偶数:

2 16 2^{16} 216---> 2 8 2 ^ 8 28 * 2 8 2 ^ 8 28 | 2 8 2 ^ 8 28 ---> 2 4 2 ^ 4 24 * 2 4 2 ^ 4 24 | 2 4 2 ^ 4 24 ---> 2 2 2 ^ 2 22 * 2 2 2 ^ 2 22 | 2 2 2 ^ 2 22 ---> 2 * 2

奇数:

2 21 2 ^{21} 221---> 2 10 2 ^ {10} 210 * 2 10 2^{10} 210 * 2 2 2 | 2 10 2 ^{10} 210 ---> 2 5 2 ^ {5} 25 * 2 5 2 ^ 5 25 | 2 5 2 ^ 5 25 ---> 2 2 2 ^ 2 22 * 2 2 2^2 22 * 2 | 2 2 2 ^ 2 22 ---> 2 2 2 * 2 2 2;

从上面的例子我们也可以看出一个共同的子问题:

如果我们要计算 x n x ^ n xn 那么我们先计算 x n / 2 x ^ {n / 2} xn/2, 通过这样的方法我们就可以将计算n次方的时间复杂度降到 l o g 2 n log _2 ^ n log2n

那么答题思路就是如上所示。

细节:

当n = − 2 31 -2 ^ {31} −231的时候我们将它转成正数会越界,所以我们在转化之前将它转成longlong即可解决;

代码

cpp 复制代码
class Solution {
public:
    double myPow(double x, int n) 
    {
        return n < 0 ? 1.0 / pow(x, -(long long)n) : pow(x, n);
    }

    double pow(double x, long long n)
    {
        if(n == 0) return 1;
        double tmp = pow(x, n / 2);
        return n % 2 == 0 ? tmp * tmp : tmp * tmp * x;
    }
};

复杂度分析

时间复杂度:

采用了快速幂的算法思路我们只需要O( l o g n log^n logn)的复杂度即可解决问题;

空间复杂度:

每次递归中都声明了一个临时变量tmp,所以空间复杂度是O( l o g n log ^ n logn);

相关推荐
晨非辰28 分钟前
数据结构排序系列指南:从O(n²)到O(n),计数排序如何实现线性时间复杂度
运维·数据结构·c++·人工智能·后端·深度学习·排序算法
残影飞雪2 小时前
Jetson版本下Pytorch和torchvision
c++
实心儿儿7 小时前
C++ —— 模板进阶
开发语言·c++
go_bai8 小时前
Linux-线程2
linux·c++·经验分享·笔记·学习方法
j_xxx404_9 小时前
C++:继承(概念及定义|作用域|基类与派生类转换|默认成员函数|与友元、静态成员关系|多继承|组合)
数据结构·c++
欧阳x天10 小时前
C++入门(二)
开发语言·c++
编程之路,妙趣横生12 小时前
STL(五) priority_queue 基本用法 + 模拟实现
c++
一念一花一世界12 小时前
Arbess从初级到进阶(9) - 使用Arbess+GitLab实现C++项目自动化部署
c++·ci/cd·gitlab·arbess
大锦终12 小时前
【Linux】Reactor
linux·运维·服务器·c++
沐怡旸13 小时前
【穿越Effective C++】23.宁以non-member、non-friend替换member函数
c++·面试