C++快速幂(递归)

文章目录

C++快速幂

题目描述

LCR 134. Pow(x, n) - 力扣(LeetCode)

解题思路

借用递归的思路实现pow函数:

首先我们来举两个例子:

偶数:

2 16 2^{16} 216---> 2 8 2 ^ 8 28 * 2 8 2 ^ 8 28 | 2 8 2 ^ 8 28 ---> 2 4 2 ^ 4 24 * 2 4 2 ^ 4 24 | 2 4 2 ^ 4 24 ---> 2 2 2 ^ 2 22 * 2 2 2 ^ 2 22 | 2 2 2 ^ 2 22 ---> 2 * 2

奇数:

2 21 2 ^{21} 221---> 2 10 2 ^ {10} 210 * 2 10 2^{10} 210 * 2 2 2 | 2 10 2 ^{10} 210 ---> 2 5 2 ^ {5} 25 * 2 5 2 ^ 5 25 | 2 5 2 ^ 5 25 ---> 2 2 2 ^ 2 22 * 2 2 2^2 22 * 2 | 2 2 2 ^ 2 22 ---> 2 2 2 * 2 2 2;

从上面的例子我们也可以看出一个共同的子问题:

如果我们要计算 x n x ^ n xn 那么我们先计算 x n / 2 x ^ {n / 2} xn/2, 通过这样的方法我们就可以将计算n次方的时间复杂度降到 l o g 2 n log _2 ^ n log2n

那么答题思路就是如上所示。

细节:

当n = − 2 31 -2 ^ {31} −231的时候我们将它转成正数会越界,所以我们在转化之前将它转成longlong即可解决;

代码

cpp 复制代码
class Solution {
public:
    double myPow(double x, int n) 
    {
        return n < 0 ? 1.0 / pow(x, -(long long)n) : pow(x, n);
    }

    double pow(double x, long long n)
    {
        if(n == 0) return 1;
        double tmp = pow(x, n / 2);
        return n % 2 == 0 ? tmp * tmp : tmp * tmp * x;
    }
};

复杂度分析

时间复杂度:

采用了快速幂的算法思路我们只需要O( l o g n log^n logn)的复杂度即可解决问题;

空间复杂度:

每次递归中都声明了一个临时变量tmp,所以空间复杂度是O( l o g n log ^ n logn);

相关推荐
Dovis(誓平步青云)1 小时前
基于探索C++特殊容器类型:容器适配器+底层实现原理
开发语言·c++·queue·适配器·stack
pipip.3 小时前
UDP————套接字socket
linux·网络·c++·网络协议·udp
孞㐑¥7 小时前
Linux之Socket 编程 UDP
linux·服务器·c++·经验分享·笔记·网络协议·udp
水木兰亭10 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
CoderCodingNo11 小时前
【GESP】C++四级考试大纲知识点梳理, (7) 排序算法基本概念
开发语言·c++·排序算法
秋风&萧瑟12 小时前
【C++】C++中的友元函数和友元类
c++
梁诚斌13 小时前
使用OpenSSL接口读取pem编码格式文件中的证书
开发语言·c++
2301_8035545217 小时前
c++中的绑定器
开发语言·c++·算法
海棠蚀omo17 小时前
C++笔记-位图和布隆过滤器
开发语言·c++·笔记
消失的旧时光-194318 小时前
c++ 的标准库 --- std::
c++·jni