特征工程优化

参考链接

https://www.bilibili.com/video/BV1WN4y1k7R1/?buvid=XU0E30D0C6006B7F1EE1425156434CFEC440F\&from_spmid=tm.recommend.0.0\&is_story_h5=false\&mid=fMtk7pz9LsVpSyGt0Mcizg%3D%3D\&p=1\&plat_id=116\&share_from=ugc\&share_medium=android\&share_plat=android\&share_session_id=b580ad13-0b4d-452f-94f5-5c54827a0dd6\&share_source=WEIXIN\&share_tag=s_i\&spmid=united.player-video-detail.0.0\&timestamp=1698372933\&unique_k=GEAv0mL\&up_id=431850986

一、介绍特征工程

特征工程是将数据转换为能够更好地表示潜在问题的特征,从而提高机器学习性能的过程。

使用场景:任何阶段得到数据。

优点:更好地表示潜在问题,提高性能。

缺点:特征找的不准备导致模型效果不好。

二、建模工作

数据的清洗和组织是特征工程的主要部分。

三、特征工程的重要性

数据和特征决定了机器学习的上线,而模型和算法只是逼近了这个上线。

四、特征工程前期工作

五、数据转换

具体方法:

归一化、标准化、对数转换、反余切函数转换、Box-Cox变换、L2-Norm变换等等。

六、特征筛选

通过特征筛选找到最相关和最有价值的特征,构建更简化和高效的模型,无关的、冗余的或噪声特征需从数据中剔除。

七、总结

特征工程复杂,需对数据十分了解,先总体分析再逐个分析特征比较节约时间。对单个特征和多个特征进行分析,然后从中找到不同特征之间或与目标特征的相关性,再进行筛选,得到的有效特征的概率会大一些。分析完后需对每个特征进行处理,如缺失值和异常值处理、归一化处理等等。总之,如果特征工程处理的很好,模型结果也会相对好一些。

相关推荐
吴佳浩7 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
diegoXie8 小时前
Python / R 向量顺序分割与跨步分割
开发语言·python·r语言
七牛云行业应用8 小时前
解决OSError: No space left... 给DeepSeek Agent装上无限云硬盘
python·架构设计·七牛云·deepseek·agent开发
BoBoZz199 小时前
CutWithScalars根据标量利用vtkContourFilter得到等值线
python·vtk·图形渲染·图形处理
失散139 小时前
Python——1 概述
开发语言·python
萧鼎9 小时前
Python 图像哈希库 imagehash——从原理到实践
开发语言·python·哈希算法
qq_251533599 小时前
使用 Python 提取 MAC 地址
网络·python·macos
Data_agent11 小时前
学术爬虫实战:构建知网论文关键词共现网络的技术指南
python·算法
_一路向北_13 小时前
爬虫框架:Feapder使用心得
爬虫·python
皇族崛起13 小时前
【3D标注】- Unreal Engine 5.7 与 Python 交互基础
python·3d·ue5