特征工程优化

参考链接

https://www.bilibili.com/video/BV1WN4y1k7R1/?buvid=XU0E30D0C6006B7F1EE1425156434CFEC440F\&from_spmid=tm.recommend.0.0\&is_story_h5=false\&mid=fMtk7pz9LsVpSyGt0Mcizg%3D%3D\&p=1\&plat_id=116\&share_from=ugc\&share_medium=android\&share_plat=android\&share_session_id=b580ad13-0b4d-452f-94f5-5c54827a0dd6\&share_source=WEIXIN\&share_tag=s_i\&spmid=united.player-video-detail.0.0\&timestamp=1698372933\&unique_k=GEAv0mL\&up_id=431850986

一、介绍特征工程

特征工程是将数据转换为能够更好地表示潜在问题的特征,从而提高机器学习性能的过程。

使用场景:任何阶段得到数据。

优点:更好地表示潜在问题,提高性能。

缺点:特征找的不准备导致模型效果不好。

二、建模工作

数据的清洗和组织是特征工程的主要部分。

三、特征工程的重要性

数据和特征决定了机器学习的上线,而模型和算法只是逼近了这个上线。

四、特征工程前期工作

五、数据转换

具体方法:

归一化、标准化、对数转换、反余切函数转换、Box-Cox变换、L2-Norm变换等等。

六、特征筛选

通过特征筛选找到最相关和最有价值的特征,构建更简化和高效的模型,无关的、冗余的或噪声特征需从数据中剔除。

七、总结

特征工程复杂,需对数据十分了解,先总体分析再逐个分析特征比较节约时间。对单个特征和多个特征进行分析,然后从中找到不同特征之间或与目标特征的相关性,再进行筛选,得到的有效特征的概率会大一些。分析完后需对每个特征进行处理,如缺失值和异常值处理、归一化处理等等。总之,如果特征工程处理的很好,模型结果也会相对好一些。

相关推荐
人工智能训练3 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1683 小时前
python性能优化方案研究
python·性能优化
码云数智-大飞4 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
biuyyyxxx5 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
极客数模6 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
小鸡吃米…7 小时前
机器学习中的代价函数
人工智能·python·机器学习
Li emily8 小时前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
m0_561359678 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
Ulyanov8 小时前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
2401_838472519 小时前
使用Python进行图像识别:CNN卷积神经网络实战
jvm·数据库·python