AttributeError: ‘str‘ object has no attribute ‘word‘

bash 复制代码
def stopword():
    stop_word_path = r'C:/Users/DELL/douban/douban/cn_stopwords.txt'
    stopword_list = [sw.replace('\n', '') for sw in open(stop_word_path,encoding='utf-8').readlines()]
    return stopword_list
def cut_word(sentence):
    seg_list = jieba.cut(sentence)
    return seg_list
def word_filter(seg_list):
    stopword_list = stopword()
    filter_list = []
    for seg in seg_list:
        word = seg.word
        flag = seg.flag
        if not flag.startswith('n'):
            continue
        if not word in stopword_list and len(word) > 1:
            filter_list.append(word)
    return filter_list
def tf_value(filter_list):
    filter_list = filter_list
    tf_value_dict = {}
    tf_value = {}
    for word in filter_list:
        tf_value_dict[word] = tf_value_dict.get(word, 0.0) + 1.0
    for key, value in tf_value_dict.items():
        tf_value[key] = float(value / len(filter_list))
    return tf_value

def load_data():
    corpus_path = r'C:/Users/DELL/douban/douban/why.txt'
    doc_list = []
    for line in open(corpus_path, 'r', encoding='utf-8'):
        content = str(line.strip())
        seg_list = cut_word(content)
        filter_word = word_filter(seg_list)
        doc_list.append(filter_word)
    return doc_list
def train_idf():
    doc_list = load_data()
    idf_dic = {}
    total_doc_num = len(doc_list) # 总的文档的数目
    # 每个词出现的文档数
    for doc in doc_list:
        for word in set(doc):
            idf_dic[word] = idf_dic.get(word, 0.0) + 1.0

    # 按照idf公式进行转换
    for key, value in idf_dic.items():
        # 加1是拉普拉斯平滑,防止部分新词在语料库中没有出现导致分母为0
        idf_dic[key] = math.log(total_doc_num / (1.0 + value))
    return idf_dic
def tf_idf(tf):
    tf_value_dict = tf # tf的值,tf_value是个字典
    idf_value = train_idf() # idf的值,idf是个字典
    tf_idf_dict = {}
    for key, value in tf_value_dict.items():
        tf_idf_dict[key] = value
        for key_idf, value_idf in idf_value.items():
            if key == key_idf:
                tf_idf_dict[key] = value * value_idf
    return tf_idf_dict

def rank():
    keyword_num = 10
    tf_idf_dict = tf_idf(tf)
    final_dict = sorted(tf_idf_dict.items(), key = lambda x: x[1], reverse = True)
    for i in range(0, len(final_dict)):
        print(final_dict[i][0] + '/', end = '')
        if i > 10:
            break
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import jieba
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context



if __name__ == '__main__':
    text = '文学'

    seg_list = cut_word(text)
    filter_word = word_filter(seg_list)
    tf = tf_value(filter_word)
    tf_idf(tf)
    rank()

各位大佬怎么搞啊这个

相关推荐
xiaohanbao0943 分钟前
Transformer架构与NLP词表示演进
python·深度学习·神经网络
love530love1 小时前
【笔记】 Podman Desktop 中部署 Stable Diffusion WebUI (GPU 支持)
人工智能·windows·笔记·python·容器·stable diffusion·podman
程序员晚枫2 小时前
Python 3.14正式发布!这5大新特性太炸裂了
python
先做个垃圾出来………2 小时前
SortedList
python
这里有鱼汤2 小时前
从DeepSeek到Kronos,3个原因告诉你:Kronos如何颠覆传统量化预测
后端·python·aigc
晓宜2 小时前
Java25 新特性介绍
java·python·算法
biter00882 小时前
IEEE Transactions 风格补充材料(Word)快速排版教程
word
深栈2 小时前
机器学习:决策树
人工智能·python·决策树·机器学习·sklearn
MediaTea3 小时前
Python:匿名函数 lambda
开发语言·python
hui函数3 小时前
Python全栈(基础篇)——Day07:后端内容(函数的参数+递归函数+实战演示+每日一题)
后端·python