深度学习炼丹炉

调参对象可针对模型本身和参数进行设置。模型本身的内容包括优化器、激活函数、正则化、损失函数等;参数设置包括:GPU数量、批处理大小、Epoch数量、初始化权重、学习率等。

针对权重初始化通常采用预训练模型或者xavier,其中前者为使用训练集得到的参数信息,更一般的为后者,通过设置参数分布来初始化权重。

相关推荐
Fr2ed0m2 分钟前
卡尔曼滤波算法原理详解:核心公式、C 语言代码实现及电机控制 / 目标追踪应用
c语言·人工智能·算法
熊猫_豆豆17 分钟前
神经网络的科普,功能用途,包含的数学知识
人工智能·深度学习·神经网络
笨蛋不要掉眼泪28 分钟前
deepseek封装结合websocket实现与ai对话
人工智能·websocket·网络协议
hesorchen38 分钟前
算力与数据驱动的 AI 技术演进全景(1999-2024):模型范式、Infra 数据、语言模型与多模态的关键突破
人工智能·语言模型·自然语言处理
你也渴望鸡哥的力量么1 小时前
基于边缘信息提取的遥感图像开放集飞机检测方法
人工智能·计算机视觉
xian_wwq1 小时前
【学习笔记】深度学习中梯度消失和爆炸问题及其解决方案研究
人工智能·深度学习·梯度
StarRocks_labs1 小时前
StarRocks 4.0:Real-Time Intelligence on Lakehouse
starrocks·人工智能·json·数据湖·存算分离
Tracy9731 小时前
DNR6521x_VC1:革新音频体验的AI降噪处理器
人工智能·音视频·xmos模组固件
weixin_307779132 小时前
基于AWS Lambda事件驱动架构与S3智能生命周期管理的制造数据自动化处理方案
人工智能·云计算·制造·aws
yumgpkpm2 小时前
CMP(类ClouderaCDP7.3(404次编译) )完全支持华为鲲鹏Aarch64(ARM)使用 AI 优化库存水平、配送路线的具体案例及说明
大数据·人工智能·hive·hadoop·机器学习·zookeeper·cloudera