深度学习炼丹炉

调参对象可针对模型本身和参数进行设置。模型本身的内容包括优化器、激活函数、正则化、损失函数等;参数设置包括:GPU数量、批处理大小、Epoch数量、初始化权重、学习率等。

针对权重初始化通常采用预训练模型或者xavier,其中前者为使用训练集得到的参数信息,更一般的为后者,通过设置参数分布来初始化权重。

相关推荐
晓数1 小时前
“平价”微智码初尝试
人工智能·jetbrains
新加坡内哥谈技术1 小时前
MCP:人工智能时代的HTTP?探索AI通信新标准
人工智能·自然语言处理·chatgpt
0x2114 小时前
[论文阅读]REPLUG: Retrieval-Augmented Black-Box Language Models
论文阅读·人工智能·语言模型
JOYCE_Leo164 小时前
一文详解卷积神经网络中的卷积层和池化层原理 !!
人工智能·深度学习·cnn·卷积神经网络
~央千澈~6 小时前
对鸿蒙 Next 系统“成熟论”的深度剖析-优雅草卓伊凡
人工智能
Donvink6 小时前
【视频生成模型】通义万相Wan2.1模型本地部署和LoRA微调
人工智能·深度学习·aigc·音视频
訾博ZiBo6 小时前
AI日报 - 2025年04月29日
人工智能
爱喝奶茶的企鹅6 小时前
Ethan独立开发产品日报 | 2025-04-27
人工智能·程序员·开源
极小狐6 小时前
如何对极狐GitLab 议题进行过滤和排序?
人工智能·git·机器学习·gitlab