深度学习炼丹炉

调参对象可针对模型本身和参数进行设置。模型本身的内容包括优化器、激活函数、正则化、损失函数等;参数设置包括:GPU数量、批处理大小、Epoch数量、初始化权重、学习率等。

针对权重初始化通常采用预训练模型或者xavier,其中前者为使用训练集得到的参数信息,更一般的为后者,通过设置参数分布来初始化权重。

相关推荐
shayudiandian几秒前
ChatGPT风格对话机器人搭建教程
人工智能·chatgpt·机器人
腾讯云开发者2 分钟前
TVP首场香港活动重磅启幕,AI出海变革风向如何把握?
人工智能
wasp5202 分钟前
Spring AI 代码分析(十)--Spring Boot集成
人工智能·spring boot·spring
AI即插即用10 分钟前
即插即用系列 | 2025 MambaNeXt-YOLO 炸裂登场!YOLO 激吻 Mamba,打造实时检测新霸主
人工智能·pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测
BagMM27 分钟前
DetLH论文阅读
人工智能·计算机视觉·目标跟踪
fundroid40 分钟前
Androidify:谷歌官方 AI + Android 开源示例应用
android·人工智能·开源
居然JuRan1 小时前
大模型瘦身术:量化与蒸馏技术全解析
人工智能
艾莉丝努力练剑1 小时前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
不去幼儿园1 小时前
【启发式算法】灰狼优化算法(Grey Wolf Optimizer, GWO)详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法
remaindertime1 小时前
基于Ollama和Spring AI:实现本地大模型对话与 RAG 功能
人工智能·后端·ai编程