深度学习炼丹炉

调参对象可针对模型本身和参数进行设置。模型本身的内容包括优化器、激活函数、正则化、损失函数等;参数设置包括:GPU数量、批处理大小、Epoch数量、初始化权重、学习率等。

针对权重初始化通常采用预训练模型或者xavier,其中前者为使用训练集得到的参数信息,更一般的为后者,通过设置参数分布来初始化权重。

相关推荐
公众号Codewar原创作者8 分钟前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
IT古董24 分钟前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生26 分钟前
机器学习连载
人工智能·机器学习
Trouvaille ~37 分钟前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
dundunmm1 小时前
论文阅读:Deep Fusion Clustering Network With Reliable Structure Preservation
论文阅读·人工智能·数据挖掘·聚类·深度聚类·图聚类
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的4通道电压 250M采样终端边缘计算采集板卡,主控支持龙芯/飞腾
人工智能·边缘计算
是十一月末1 小时前
Opencv实现图像的腐蚀、膨胀及开、闭运算
人工智能·python·opencv·计算机视觉
云空1 小时前
《探索PyTorch计算机视觉:原理、应用与实践》
人工智能·pytorch·python·深度学习·计算机视觉
杭杭爸爸1 小时前
无人直播源码
人工智能·语音识别
Ainnle2 小时前
微软 CEO 萨提亚・纳德拉:回顾过去十年,展望 AI 时代的战略布局
人工智能·microsoft