【论文分享】Exploring Security Commits in Python

  1. Title: Exploring Security Commits in Python (探索Python中的安全提交)

  2. Authors: Shiyu Sun, Shu Wang, Xinda Wang, Yunlong Xing, Elisa Zhang, Kun Sun

  3. Affiliation: George Mason University (乔治·梅森大学)

  4. Keywords: Security Commit, Python, Dataset Construction, Code Property Graph, Graph Learning, Vulnerability Fixes

  5. Urls: Paper, Github

  6. Summary:

  • (1): 该论文研究背景是Python中的安全问题通过"无声"安全提交修复,而大部分安全问题并没有在CVE中得到记录,这对软件安全构成威胁,也阻碍了对下游软件的安全修复。

  • (2): 过去的方法有限,无法在Python中检测安全提交。由于数据种类有限、代码语义不全面以及学习到的特征不可解释,现有数据集和方法无法满足Python中安全提交的检测需求。

  • (3): 本文提出了一种研究方法,构建了Python中的第一个安全提交数据集PySecDB,包括基本数据集、试点数据集和扩充数据集。通过提取代码更改的语义,建立了一种名为CommitCPG的新图表示和一种名为SCOPY的多属性图学习模型,来确定安全提交的候选项。

  • (4): 本文通过实验证明了所提出算法可以提高数据收集效率高达40个百分点。经过三位安全专家的手动验证后,PySecDB包括1,258个安全提交和2,791个非安全提交。此外,通过对PySecDB的广泛案例研究,发现了覆盖了85%以上Python安全提交的四种常见修复模式,为安全软件维护、漏洞检测和自动化程序修复提供了见解。

    prompt_token_used: 2146 completion_token_used: 538 total_token_used: 2684

    response_time: 40.056 s

    method_result:

  1. Methods:
  • (1): 本研究的方法基于构建Python中的安全提交数据集(PySecDB)。通过从版本控制系统中提取提交历史记录,构建了一个基础数据集,其中包含有关提交的元数据和代码更改的补丁。随后,针对数据集中特定的Python软件包进行了试点研究,构建了一个试点数据集,用于检测安全提交的特征。最后,通过收集额外的Python软件包数据,扩充了数据集,以评估算法的泛化性能和可扩展性。

  • (2): 为了有效表示代码更改的语义,本文引入了一种名为CommitCPG的新图表示。通过将提交的源代码更改映射到代码属性图(Code Property Graph,CPG)上,可以捕捉到代码的结构和内容。CommitCPG允许通过节点和边的各种属性来表示提交的语义。

  • (3): 为了确定安全提交的候选项,本文提出了一种名为SCOPY的多属性图学习模型。SCOPY通过学习多属性图的表示和结构,将表示代码更改的CommitCPG与元数据和补丁信息相结合。该模型可以综合考虑多种属性,并自动筛选出与安全相关的提交。

  • (4): 通过对所构建数据集的实验证明和专家验证,本文证明了所提出的算法在安全提交检测方面的有效性。经过性能评估和案例研究,发现并总结了覆盖Python安全提交的四种常见修复模式,为后续的安全软件维护、漏洞检测和自动化修复提供了重要见解和指导。

    prompt_token_used: 825 completion_token_used: 492 total_token_used: 1317

    response_time: 36.988 s

    conclusion_result:

  1. Conclusion:
  • (1): The significance of this piece of work lies in its exploration of security commits in Python and the construction of the PySecDB dataset. By addressing the challenge of silent vulnerability fixes that are not documented in CVE, this research not only identifies potential security issues but also provides insights for downstream software security fixes.

  • (2): Innovation point: This article introduces a novel approach by constructing the PySecDB dataset, which includes metadata and code patches extracted from version control systems. It also introduces a new graph representation called CommitCPG, which effectively captures the semantic information of code changes. Furthermore, the SCOPY model, a multi-attribute graph learning approach, combines CommitCPG with metadata and patch information to identify security commits.

Performance: The proposed algorithm demonstrated improved data collection efficiency by 40 percentage points. Through manual verification by three security experts, PySecDB includes 1,258 security commits and 2,791 non-security commits. The extensive case studies conducted using PySecDB revealed four common patterns covering over 85% of Python security commits, providing valuable insights for software maintenance, vulnerability detection, and automated program repair.

Workload: The workload of this research involved constructing the PySecDB dataset, which required extracting commit histories from version control systems and mapping code changes to CommitCPG graphs. Additionally, manual verification by security experts was performed to ensure the accuracy of the dataset. While the workload may have been significant, the results obtained validate the effectiveness and importance of this research.

Therefore, the innovation point of this article lies in the construction of PySecDB, the CommitCPG graph representation, and the SCOPY model. The performance of the algorithm was demonstrated through improved data collection efficiency and the comprehensive coverage of Python security commits. The workload involved in constructing the dataset and conducting manual verification was necessary to ensure the reliability of the findings.

prompt_token_used: 1325 completion_token_used: 376 total_token_used: 1701

response_time: 30.45 s

summary_result:

相关推荐
love530love21 分钟前
Windows避坑部署CosyVoice多语言大语言模型
人工智能·windows·python·语言模型·自然语言处理·pycharm
prinrf('千寻)1 小时前
MyBatis-Plus 的 updateById 方法不更新 null 值属性的问题
java·开发语言·mybatis
m0_555762901 小时前
Qt缓动曲线详解
开发语言·qt
掘金-我是哪吒2 小时前
分布式微服务系统架构第132集:Python大模型,fastapi项目-Jeskson文档-微服务分布式系统架构
分布式·python·微服务·架构·系统架构
揽你·入怀2 小时前
数据结构:ArrayList简单实现与常见操作实例详解
java·开发语言
AA-代码批发V哥2 小时前
Math工具类全面指南
java·开发语言·数学建模
xhdll2 小时前
egpo进行train_egpo训练时,keyvalueError:“replay_sequence_length“
python·egpo
Nobkins3 小时前
2021ICPC四川省赛个人补题ABDHKLM
开发语言·数据结构·c++·算法·图论
Cchaofan3 小时前
lesson01-PyTorch初见(理论+代码实战)
人工智能·pytorch·python
网络小白不怕黑3 小时前
Python Socket编程:实现简单的客户端-服务器通信
服务器·网络·python