小样本分割的新视角,Learning What Not to Segment【CVPR 2022】

论文地址:Excellent-Paper-For-Daily-Reading/image-segmentation at main

类别:图像分割

时间:2023/11/01

摘要

目前背景:少样本分割 (FSS) 得到了广泛的发展。以前的大多数工作都在努力通过分类任务衍生的元学习框架来实现泛化。

存在问题:但受过训练的模型偏向于预测可见类,从而阻碍了对新范式的认识。

论文贡献:本文提出了一个新鲜而直接的见解,以缓解此类问题。具体而言,将额外分支(基础学习器)应用于常规FSS模型(元学习器),以明确识别基类的目标,即不需要细分的区域。然后,将这两个学习器的粗略结果进行了自适应整合,以产生精确的分割预测。考虑到元学习器的灵敏度,进一步引入了一个调整因素,以估计输入图像对之间的场景差异,以促进模型集合预测。

实验效果:在数据集Pascal-5i和COCO-20i上的显著性能提升验证了效果。此外,鉴于提出的方法的独特性质,还将其扩展到更现实但具有挑战性的环境,即广义FSS。

代码已开源:

chunbolang/BAM:Learning What Not to Segment: A New Perspective on Few-Shot Segmentation

实验

左边的面板来自PASCAL-5,右边的面板来自COCO-20

基线方法为上图第三行,BAM的效果为上图第四行,经过比对可以发现基线方法错误分割的的目标被显著的抑制了。这里表明了研究工作的正确性。

总结

在原先的元学习框架中,是对大量的标注样本的基数据集上进行的元训练,其更加偏向于原先学习的类别,这阻碍了对于新概念的理解。论文方案的核心思想是利用基础学习器来识别查询图像中的可混淆(基)区域,并进一步细化元学习器的预测。令人惊讶的是,即使使用两个简单的学习器,我们的方案也设定了FSS基准的最新水平。此外,我们将当前的任务扩展到更具挑战性的广义设置,并产生了强有力的基线结果。

相关推荐
yunfuuwqi18 分钟前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云
九河云24 分钟前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
2的n次方_32 分钟前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训35 分钟前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
wenzhangli735 分钟前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
后端小肥肠1 小时前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
每日新鲜事1 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
Coder_Boy_1 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
挖坑的张师傅2 小时前
对 AI Native 架构的一些思考
人工智能
LinQingYanga2 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能