深度学习之基于YoloV5-Deepsort人物识别与追踪系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

YoloV5-Deepsort是一种基于深度学习的人物识别与追踪系统,具有较高的准确率和实时性能。

YoloV5是一种目标检测算法,可以快速识别图像或视频中的不同目标。它采用了轻量级网络结构,并通过从预训练模型中进行微调来提高检测精度。相比于之前的版本,YoloV5在保持准确率的情况下,更加注重速度和模型大小的平衡。

Deepsort是一种多目标跟踪算法,可以实现对物体在连续帧中的追踪。它通过结合外观特征和运动信息来确定物体的身份,并使用卡尔曼滤波进行轨迹预测。Deepsort在高密度和复杂场景下表现出色,并且具有较强的鲁棒性。将YoloV5和Deepsort结合起来,可以构建一个端到端的人物识别与追踪系统。

二、功能

环境:Python3.7.4、OpenCV4.7、YoloV7、Pytorch1.9.1、PyCharm2020

简介:深度学习之基于YoloV5-Deepsort人物识别与追踪项目

三、系统

四. 总结

该系统首先使用YoloV5进行目标检测,然后利用Deepsort算法对检测到的人物进行跟踪。通过实时更新目标的状态和位置,系统可以在视频中准确跟踪多个人物,并提供具有时间信息的轨迹预测。

YoloV5-Deepsort人物识别与追踪系统在许多领域都有广泛应用,例如监控、智能交通和视频分析等。它可以提供实时可视化结果,并具备较高的稳定性和准确性。

相关推荐
美狐美颜sdk39 分钟前
直播美颜SDK特效功能实战:从API调用到效果调优的全过程
人工智能·1024程序员节·美颜sdk·直播美颜sdk·第三方美颜sdk
sali-tec4 小时前
C# 基于halcon的视觉工作流-章56-彩图转云图
人工智能·算法·计算机视觉·c#
梦想画家4 小时前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
Elastic 中国社区官方博客5 小时前
在 Elasticsearch 中使用 Mistral Chat completions 进行上下文工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
一碗绿豆汤5 小时前
机器学习第二阶段
人工智能·机器学习
用什么都重名5 小时前
DeepSeek-OCR 深度解析
人工智能·ocr·deepseek-ocr
河南骏6 小时前
RAG_检索进阶
人工智能·深度学习
灯火不休时7 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
mit6.8247 小时前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub7 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp