数据集笔记:Telecom Shanghai Dataset

0 数据地址

📱Telecom Shanghai Dataset (kaggle.com)

1 数据描述

  • 该数据集由上海电信提供,包含超过720万条记录,记录了9481部手机通过3233个基站访问互联网的情况,时间跨度为六个月。
  • 例如,下图显示了基站的分布情况。每个节点代表中国上海的一个基站。
  • 这个数据集可以帮助研究人员评估他们在移动边缘计算主题上的解决方案,如边缘服务器部署、服务迁移、服务推荐等。

2 数据介绍

  • 电信数据集展示了6个参数,例如月份、数据、开始时间、结束时间、基站位置、手机ID。
  • 通过数据集可以找到用户的轨迹。

每15天一个表

3 python读取+可视化

3.1 读取数据

python 复制代码
import pandas as pd

data=pd.read_excel('Downloads/Telecom Shanghai Dataset/data_10.110.15.xlsx',names=['Data','start time','end time','cell station lon','cell station lat','user id'])

3.2 剔除经纬度为NaN的record

python 复制代码
data1=data.dropna()
data1

3.3 选择某一天的数据

python 复制代码
import datetime
data2=data1[(data1['start time']>=datetime.datetime(2014,10,15)) & (data1['start time']<datetime.datetime(2014,10,16))]
data2

3.4 根据user id和时间排序

python 复制代码
data2=data2.sort_values(by=['user id','start time'])
data2

3.5 停留的记录只保留第一条

3.5.1 首先确定哪些时刻在移动

记录当前位置和前一时刻的位置

python 复制代码
data2['location']=data2['cell station lon'].astype(str)+'_'+data2['cell station lat'].astype(str)
data2
python 复制代码
data2['prev_location']=data2['location'].shift(1)
data2
python 复制代码
data2['location_changed']=(data2['location']!=data2['prev_location'])
data2

3.5.2 保留当前时刻在移动的记录

python 复制代码
data3=data2[data2['location_changed']==True]
data3
python 复制代码
data3=data3[[ 'start time', 'end time', 'cell station lon',
       'cell station lat', 'user id']]
data3

3.6 保留轨迹长度大于10的轨迹

计算每一个用户id出现的次数

python 复制代码
iid=data3.groupby('user id').size().reset_index(name='count')
iid
python 复制代码
iid['count'].describe()
'''
count    2956.000000
mean        4.675237
std         4.769128
min         1.000000
25%         2.000000
50%         3.000000
75%         6.000000
max        69.000000
Name: count, dtype: float64
'''
python 复制代码
iid=iid[iid['count']>10]
iid
python 复制代码
data4=data3[data3['user id'].isin(iid['user id'])]
data4

3.7 绘制一条轨迹(使用folium)

python 复制代码
import numpy as np
tmp=data4[data4['user id']=='00a05a4f2b937fd38888c03213c4deb2'].reset_index()
tra_lst=[]
for j in range(tmp.shape[0]):
        tra_lst.append([tmp.at[j,'cell station lon'],tmp.at[j,'cell station lat']])
tra_lst=np.array(tra_lst)
m=folium.Map(location=tra_lst.mean(axis=0),zoom_start=13)
for i in tra_lst:
    folium.Marker(location=i).add_to(m)
folium.PolyLine(locations=tra_lst).add_to(m)
    
m
相关推荐
little_xianzhong37 分钟前
三个常听到的消息/中间件MQTT RabbitMQ Kafka
java·笔记·中间件·消息队列
ysa0510302 小时前
虚拟位置映射(标签鸽
数据结构·c++·笔记·算法
songyuc3 小时前
《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记
人工智能·笔记·计算机视觉
01100001乄夵4 小时前
第二课:时序逻辑入门-零基础FPGA闯关教程
经验分享·笔记·学习方法
摇滚侠5 小时前
Spring Boot3零基础教程,Reactive-Stream 发布订阅写法,笔记104 笔记105
java·spring boot·笔记
循环过三天11 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
昌sit!13 小时前
Linux系统性基础学习笔记
linux·笔记·学习
没有钱的钱仔13 小时前
机器学习笔记
人工智能·笔记·机器学习
好望角雾眠14 小时前
第四阶段C#通讯开发-9:网络协议Modbus下的TCP与UDP
网络·笔记·网络协议·tcp/ip·c#·modbus
仰望—星空15 小时前
MiniEngine学习笔记 : CommandListManager
c++·windows·笔记·学习·cg·direct3d