带货视频评论洞察 Baseline 学习笔记 (Datawhale Al夏令营)

一、 项目认识

背景:

电商直播/短视频已积累大量「视频 + 评论」数据,蕴含了消费者的真实反馈。

目标:

通过「商品识别 → 情感分析 → 评论聚类」三步,辅助品牌洞察、网红投放评估。

二、 Baseline 代码流程

  1. 读取和预处理
python 复制代码
video_data  = pd.read_csv("origin_videos_data.csv")
comments_data = pd.read_csv("origin_comments_data.csv")
video_data["text"] = video_desc + " " + video_tags  # 拼接文本
  1. 商品识别
python 复制代码
pipeline = make_pipeline(
    TfidfVectorizer(tokenizer=jieba.lcut, max_features=50),
    SGDClassifier()
)
pipeline.fit(labeled_text, labeled_product)
video_data["product_name"] = pipeline.predict(video_data["text"])

实现思路: TF-IDF + 线性分类器(SGD)做二分类

简化点:仅用了 50 个特征,无额外的清洗。

  1. 意图分类(四个模型)
python 复制代码
for col in ["sentiment_category", "user_scenario", "user_question", "user_suggestion"]:
    pipeline = make_pipeline(TfidfVectorizer(tokenizer=jieba.lcut), SGDClassifier())
    pipeline.fit(train_text, train_label)
    comments_data[col] = pipeline.predict(all_text)
  1. 评论聚类 & 主题词抽取 (5个维度进行执行)
python 复制代码
pipeline = make_pipeline(TfidfVectorizer(tokenizer=jieba.lcut), KMeans(n_clusters=2))
pipeline.fit(subset_text)
labels = pipeline.predict(subset_text)
top_words = (" ".join(前 10 重要词))  # 每簇
comments_data[target_theme_col] = [top_words[label] for label in labels]

大赛要求: 要求 5 - 8 个簇,目前项目仅用了 n_clusters = 2。

调整策略:将 n_clusters 进行优化调整,让其等于 5-8 之间,进行优化。

  1. 结果导出
python 复制代码
video_data[["video_id", "product_name"]].to_csv("submit/submit_videos.csv", index=False)
comments_data[导出列].to_csv("submit/submit_comments.csv", index=False)
!zip -r submit.zip submit/

三、 技术分析

  1. 分词 & 特征

jieba + TfidfVectorizer: 适配中英文及 emoji/特殊符号。

  1. 商品识别

SGDClassifier: 快速迭代、可在线学习。

  1. 意图分类

多个 SGDClassifier: 训练速度快,支持稀疏特征。

  1. 聚类

KMeans: 易解释、效率高。

  1. 主题词抽取

中心向量前 N 词: 简单直观。

四、Baseline 局限 & 提升方向

  1. 文本预处理缺失:大小写、URL、表情、停用词均未处理。

  2. 模型简单:全部采用线性/常规模型,难以捕捉深层语义。

  3. 聚类数量不合规:固定 2 簇,势必影响 100 分聚类子任务。

  4. 未利用多语言特性:数据包含中/英/日/韩等多语,分词器不统一。

  5. 评价指标未在本地计算:无法提前验证得分。

五、学习收获

  1. 端到端管线思维:一个 Notebook 覆盖读取→标注数据利用→预测→聚类→提交文件的完整链路,是参赛 Baseline 的典型范式。

  2. 快速原型:Scikit-learn + jieba 几行代码即可跑通 baseline,利于早期验证。

  3. 实验可重复:全部步骤在 Notebook 内显式记录,方便 debug / 复现。

  4. 评测视角:先满足格式与流程正确,再逐步优化指标 ------ 典型竞赛节奏。

  5. 改进空间评估:通过阅读代码可迅速定位性能瓶颈,为后续升级指明方向。

相关推荐
Billy_Zuo4 分钟前
人工智能机器学习——逻辑回归
人工智能·机器学习·逻辑回归
red_redemption7 分钟前
自由学习记录(95)
学习
东风西巷1 小时前
Balabolka:免费高效的文字转语音软件
前端·人工智能·学习·语音识别·软件需求
非门由也1 小时前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy1 小时前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数
非门由也1 小时前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
计算机毕业设计指导1 小时前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
飞哥数智坊1 小时前
终端里用 Claude Code 太难受?我把它接进 TRAE,真香!
人工智能·claude·trae
小王爱学人工智能2 小时前
OpenCV的阈值处理
人工智能·opencv·计算机视觉
新智元2 小时前
刚刚,光刻机巨头 ASML 杀入 AI!豪掷 15 亿押注「欧版 OpenAI」,成最大股东
人工智能·openai