【深度学习】torch-张量Tensor

torch-张量Tensor

文章目录

1. 张量Tensor

  • torch.tensor()
python 复制代码
# 创建一个标量(0维张量)
scalar_tensor = torch.tensor(3.14)
# 创建一个向量(1维张量)
vector_tensor = torch.tensor([1, 2, 3])
# 创建一个矩阵(2维张量)
matrix_tensor = torch.tensor([[1, 2], [3, 4]])
# 创建一个3维张量
tensor_3d = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
  • torch.zeros()-全零张量
python 复制代码
zero_tensor = torch.zeros(3, 4)  # 3行4列的全零矩阵
  • torch.ones()-全一张量
python 复制代码
ones_tensor = torch.ones(2, 3)  # 2行3列的全一矩阵
  • torch.full()-常数填充张量
python 复制代码
constant_tensor = torch.full((2, 2), 7)  # 2行2列的常数填充矩阵,值为7
  • torch.eye()-单位矩阵
python 复制代码
identity_matrix = torch.eye(3)  # 3阶单位矩阵
  • torch.arange()-等差数列张量
python 复制代码
range_tensor = torch.arange(0, 10, 2)  # 从0开始,步长为2,直到小于10
  • torch.rand()-随机张量
python 复制代码
rand_tensor = torch.rand(2, 3)  # 2行3列的均匀分布随机矩阵
  • torch.randn()-正态分布随机张量
python 复制代码
randn_tensor = torch.randn(3, 3)  # 3行3列的正态分布随机矩阵
  • size()-形状
python 复制代码
x = torch.rand(2, 3)
print(x.size())  # 输出: torch.Size([2, 3])
  • dtype-数据类型指定及获取
python 复制代码
x = torch.rand(2, 3, dtype=torch.float)
print(x.dtype)  # 输出: torch.float32
  • to()-GPU/CPU
python 复制代码
if torch.cuda.is_available():
    device = torch.device("cuda")          # GPU 设备
else:
    device = torch.device("cpu")           # CPU 设备
x = x.to(device)
  • randn_like()、zeros_like()、ones_like()-已知张量创建形状类似的张量
python 复制代码
t = torch.randn(3,3)
t1 = torch.randn_like(t)
  • 张量方法(它们有很多参数可选,要用再查):
python 复制代码
t = torch.rand(3, 4, 5)
t.nelement()  # 返回数量
t.size()  # 返回尺寸,元组
t.shape  # 返回形状,元组
t.size(2)  # 返回指定维度大小
t.view(12, 5)    
t.view(-1, 6).shape
t.view(-1, 6).transpose(1, 0).shape
  • 索引和切片

张量的索引和切片和列表基本是一样的,有步长、起点、终点等。例如:

python 复制代码
t[0,0,2]   t[:,1,1]   t>0   t[t > 0]
  • 张量运算
python 复制代码
# 加法运算
add_res = x + y  
# 减法运算  
sub_res = x - y  
# 乘法运算  
mul_res = x * y  
# 除法运算  
div_res = x / y  

# 加法运算
add_res = torch.add(x, y)
# 减法运算
sub_res = torch.subtract(x, y)
# 乘法运算
mul_res = torch.mul(x, y)
# 除法运算
div_res = torch.div(x, y)
  • 转置:
python 复制代码
x = torch.randn(3, 4)
y = x.transpose(0, 1)

下面是对张量操作的总结,不含代码,要用再查:

  • 创建操作:用于构造张量的函数,如ones()和from_numpy()
  • 修改操作:用于直接修改张量
  • 索引、切片、连接、转换操作:用于改变张量的形状、步长或内容的函数
  • 数学操作:通过运算操作张量内容的函数:
    • 逐点操作:通过对每个元素分别应用一个函数来得到一个新的张量,如abs()、cos()
    • 归约操作:通过迭代张量来计算聚合值的函数,如mean()
    • 比较操作:在张量上计算数字谓词的函数
    • 频谱操作:在频域上进行变换和操作的函数
    • 其他操作:作用于向量的特定函数,或对矩阵进行操作的函数
    • BLAS和LAPACK操作:符合基本线性代数子程序规范的函数,用于标量、向量---向量、矩阵---向量、矩阵---矩阵操作
  • 随机采样:从概率分布中随机生成值的函数
  • 序列化:保存和加载张量的函数
  • 并行化:用于控制并行CPU执行的线程数的函数。

与·numpy的互操作:

python 复制代码
# 从张量points得到一个numpy数组
points_np = points.numpy()

# 从numpy得到一个pytorch张量
points = torch.from_numpy(points_np)
相关推荐
Coovally AI模型快速验证13 分钟前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
居7然13 分钟前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
Scabbards_14 分钟前
KGGEN: 用语言模型从纯文本中提取知识图
人工智能·语言模型·自然语言处理
LeonDL16832 分钟前
【通用视觉框架】基于C#+Winform+OpencvSharp开发的视觉框架软件,全套源码,开箱即用
人工智能·c#·winform·opencvsharp·机器视觉软件框架·通用视觉框架·机器视觉框架
AI纪元故事会35 分钟前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
Shang180989357261 小时前
T41LQ 一款高性能、低功耗的系统级芯片(SoC) 适用于各种AIoT应用智能安防、智能家居方案优选T41L
人工智能·驱动开发·嵌入式硬件·fpga开发·信息与通信·信号处理·t41lq
Bony-1 小时前
用于糖尿病视网膜病变图像生成的GAN
人工智能·神经网络·生成对抗网络
罗西的思考1 小时前
【Agent】 ACE(Agentic Context Engineering)源码阅读笔记---(3)关键创新
人工智能·算法
Elastic 中国社区官方博客1 小时前
通过混合搜索重排序提升多语言嵌入模型的相关性
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
猫头虎1 小时前
昆仑芯 X HAMi X 百度智能云 | 昆仑芯 P800 XPU/vXPU 双模式算力调度方案落地
人工智能·百度·开源·aigc·文心一言·gpu算力·agi