Python 利用pandas和matplotlib绘制堆叠柱状图

在数据可视化中,堆叠柱状图是一种常用的图表类型,它能够清晰地展示多个类别的数据,并突出显示每个类别中各部分的总量和组成比例。本文将演示如何使用 Python 的 pandas 和 matplotlib 库绘制优化的堆叠柱状图,并展示了销售数量随店铺名称变化的情况。

导入必要的库

首先,我们需要导入 pandas 和 matplotlib.pyplot 库,并指定中文字体为黑体,代码如下:

复制代码
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = ['SimHei']  # 指定中文字体为黑体

读取数据

接下来,我们使用 pandas 的 read_excel 函数读取 Excel 文件中的数据,并指定读取的工作表名称为"Sheet3",如下所示:

复制代码
df = pd.read_excel(r'C:\Users\liuchunlin2\Desktop\新建文件夹\新建 XLSX 工作表.xlsx', sheet_name='Sheet3')

设置图形参数

在绘制堆叠柱状图之前,我们需要设置柱状图的宽度和 x 轴的位置,代码如下:

复制代码
bar_width = 0.35  # 设置柱状图的宽度
x = df.index  # 设置x轴的位置

绘制堆叠柱状图

使用 matplotlib 库的 subplots 函数创建图形对象,并使用 bar 函数绘制堆叠柱状图,具体代码如下:

复制代码
fig, ax = plt.subplots()
rects1 = ax.bar(x, df['销售数量'], bar_width, label='销售数量')
rects2 = ax.bar(x, df['销售数量2'], bar_width, bottom=df['销售数量'], label='销售数量2')

添加标签和标题

我们为图形添加轴标签、标题、刻度和图例,使其更具可读性,具体代码如下:

复制代码
ax.set_xlabel('店铺名称')
ax.set_ylabel('销售数量')
ax.set_title('Stacked Bar Chart')
ax.set_xticks(x)
ax.set_xticklabels(df['店铺名称'])
ax.legend()

显示数据标签

最后,我们使用 annotate 函数在每个柱子上方显示数据标签,以展示具体的销售数量,具体代码如下:

复制代码
for rect in rects1:
    height = rect.get_height()
    ax.annotate(f'{height}', xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3),
                textcoords='offset points', ha='center', va='bottom')

for rect1, rect2 in zip(rects1, rects2):
    height1 = rect1.get_height()
    height2 = rect2.get_height()
    total_height = height1 + height2
    ax.annotate(f'{height2}', xy=(rect2.get_x() + rect2.get_width() / 2, total_height), xytext=(0, 3),
                textcoords='offset points', ha='center', va='bottom')

显示图形

最后,使用 plt.show() 函数显示绘制好的堆叠柱状图,代码如下:

复制代码
plt.show()

通过以上步骤,我们成功绘制出了堆叠柱状图,展示了不同店铺的销售数量情况。

图表效果图展示

完整代码:

复制代码
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = ['SimHei']  # 指定中文字体为黑体
# 读取Excel文件
df = pd.read_excel(r'C:\Users\liuchunlin2\Desktop\新建文件夹\新建 XLSX 工作表.xlsx', sheet_name='Sheet3')
# 设置柱状图的宽度
bar_width = 0.35
# 设置x轴的位置
x = df.index

# 绘制堆叠柱状图
fig, ax = plt.subplots()
rects1 = ax.bar(x, df['销售数量'], bar_width, label='销售数量')
rects2 = ax.bar(x, df['销售数量2'], bar_width, bottom=df['销售数量'], label='销售数量2')

# 添加标签和标题
ax.set_xlabel('店铺名称')
ax.set_ylabel('销售数量')
ax.set_title('Stacked Bar Chart')
ax.set_xticks(x)
ax.set_xticklabels(df['店铺名称'])
ax.legend()

# 在每个柱子上方显示数据标签
for rect in rects1:
    height = rect.get_height()
    ax.annotate(f'{height}', xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3),
                textcoords='offset points', ha='center', va='bottom')

for rect1, rect2 in zip(rects1, rects2):
    height1 = rect1.get_height()
    height2 = rect2.get_height()
    total_height = height1 + height2
    ax.annotate(f'{height2}', xy=(rect2.get_x() + rect2.get_width() / 2, total_height), xytext=(0, 3),
                textcoords='offset points', ha='center', va='bottom')

# 显示图形
plt.show()
相关推荐
数据知道18 分钟前
FastAPI项目:构建打字速度测试网站(MySQL版本)
数据库·python·mysql·fastapi·python项目
vvoennvv21 分钟前
【Python TensorFlow】CNN-BiLSTM-Attention时序预测 卷积神经网络-双向长短期记忆神经网络组合模型带注意力机制(附代码)
python·神经网络·cnn·tensorflow·lstm·bilstm·注意力
程序员爱钓鱼32 分钟前
Python 编程实战:环境管理与依赖管理(venv / Poetry)
后端·python·trae
程序员爱钓鱼34 分钟前
Python 编程实战 :打包与发布(PyInstaller / pip 包发布)
后端·python·trae
我叫侯小科1 小时前
PyTorch 实战:手写数字识别(MNIST)从入门到精通
人工智能·pytorch·python
青衫客361 小时前
浅谈 Python 的 C3 线性化算法(C3 Linearization):多继承背后的秩序之美
python·mro·c3线性化算法
Gitpchy1 小时前
Day 47 注意力热图可视化
python·深度学习·cnn
zhjadsf2 小时前
Huggingface_hub源码解析 - 简介篇
python·huggingface
20岁30年经验的码农3 小时前
Python语言基础文档
开发语言·python
清静诗意4 小时前
独立 IoT 客户端绕过 Django 生命周期导致数据库断链:诊断与修复
python·mysql·django·生命周期