深度探究深度学习常见数据类型INT8 FP32 FP16的区别即优缺点

定点和浮点都是数值的表示 (representation),它们区别在于,将整数(integer)部分和小数(fractional)部分分开的点,点在哪里。定点保留特定位数整数和小数,而浮点保留特定位数的有效数字(significand)和指数(exponent)

1.FP与INT

FP代表浮点运算数据格式,包括双精度FP64 单精度FP32 半精度FP16和FP8

INT代表整数数据格式,包括INT8和INT4

后面的数字越高意味着精度越高能够支持的运算复杂度也就越高 适配场景也就越广,同样对推理端的计算资源要求也就越高;

2.FP64、FP32、FP8 和INT8、INT4

双精度FP64 :浮点数使用64位表示,提供更好的精度和动态范围。通常应用在高精度计算的场景中,对存储空间以及计算资源要求较多 通常较少使用

单精度FP32:浮点数使用32位表示,适用于大多数科学计算和通用计算任务。通常我们训练神经网络模型的时候默认使用的数据类型为单精度FP32

半精度FP16:浮点数使用16位表示。相对于FP32提供了较低的精度,按照理论来说可以跑机器学习这些任务,但是FP16会出现精度溢出和舍入误差,所以很多应用都是使用混合精度计算的也就是FP16+FP32模式

浮点数在高精度图像处理有较大优势能够使图片中更多颜色、对比度、质感和清晰度得以保留。

但INT类型速度更快

  • 第一部分为 sign 符号位 s,占 1 bit,用来表示正负号;
  • 第二部分为 exponent 指数偏移值 k,占 5 bits,用来表示其是 2 的多少次幂;
  • 第三部分是 fraction 分数值(有效数字) M,占 10 bits,用来表示该浮点数的数值大小。

固定点数INT8:固定点数使用固定的小数点位置来表示数值,可以使用定点数算法进行计算。相对于浮点数计算,算力和内存资源要求更低。

相关推荐
Shawn_Shawn2 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like4 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a4 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者5 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗5 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper6 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_6 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信6 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235866 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活