【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Mask Decoder

论文:Segment Anything

代码:https://github.com/facebookresearch/segment-anything

系列篇:

(1)【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder

(2)【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Prompt Encoder

本篇示例依然采用系列篇中的狗狗图像运行代码,预测部分代码如下:

python 复制代码
input_point = np.array([[1300, 800]])   # 输入point的坐标
input_label = np.array([1])   # label=1表示前景, label=0表示背景
# 输入box的坐标,(700,400)为左上角坐标, (1900,1100)为右下角坐标
input_box = np.array([[700, 400, 1900, 1100]])   
# 调用预测函数
masks, scores, logits = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    box=input_box,
    multimask_output=True,
)


1. Mask Decoder代码解析

(1)输入参数

在【segment_anything/predictor.py --> SamPredictor类 -->predict_torch函数】中调用了mask_decoder实现mask预测,如下所示:

python 复制代码
low_res_masks, iou_predictions = self.model.mask_decoder(
            image_embeddings=self.features,
            image_pe=self.model.prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
        )

①参数self.features为input_image经过image_encoder嵌入后的向量,本例中大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64] ;

②参数sparse_embeddings为prompt point和prompt box经过prompt_encoder得到的嵌入向量,本例中其大小为 [ 1 , 3 , 256 ] {[1, 3, 256]} [1,3,256] ;

③参数dense_embeddings在本例中为无prompt mask输入时采用 nn.Embedding 的预定义嵌入向量, 其大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64] ;

④参数multimask_output是bool型参数,默认为True,支持多mask输出;

⑤参数self.model.prompt_encoder.get_dense_pe()调用PositionEmbeddingRandom实现位置编码,其大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64] ;

python 复制代码
  def get_dense_pe(self) -> torch.Tensor:
        return self.pe_layer(self.image_embedding_size).unsqueeze(0)

(2)MaskDecoder类

位置: 【segment_anything/modeling/mask_decoder.py -->MaskDecoder类】
作用: 初始化网络结构,并调用predict_masks函数实现mask和iou预测

先看MaskDecoder的 _ _ i n i t _ _ {\\init\\} init 初始化函数和 f o r w a r d {forward} forward 函数:

python 复制代码
class MaskDecoder(nn.Module):
    def __init__(
        self,
        *,
        transformer_dim: int,
        transformer: nn.Module,
        num_multimask_outputs: int = 3,
        activation: Type[nn.Module] = nn.GELU,
        iou_head_depth: int = 3,
        iou_head_hidden_dim: int = 256,
    ) -> None:
       
        super().__init__()
        self.transformer_dim = transformer_dim   # transformer的通道维度 = 256
        self.transformer = transformer  # 用于mask预测的transformer = TwoWayTransformer

        self.num_multimask_outputs = num_multimask_outputs  # 消除歧义时需要的mask数量 = 3

        self.iou_token = nn.Embedding(1, transformer_dim)  # (1, 256)
        self.num_mask_tokens = num_multimask_outputs + 1   # mask数目加1 = 4
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)  # (4, 256)
        # 以反卷积实现4倍上采样
        self.output_upscaling = nn.Sequential(
            nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
            LayerNorm2d(transformer_dim // 4),
            activation(),
            nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
            activation(),
        )
        # 4个mask对应的mlp
        self.output_hypernetworks_mlps = nn.ModuleList(
            [
                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
                for i in range(self.num_mask_tokens)
            ]
        )
        # iou预测对应的mlp
        self.iou_prediction_head = MLP(
            transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
        )

    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
       
        masks, iou_pred = self.predict_masks(
            image_embeddings=image_embeddings,  # image encoder嵌入 [1, 256, 64, 64]
            image_pe=image_pe,  # 图像嵌入大小对应的位置编码 [1, 256, 64, 64]
            sparse_prompt_embeddings=sparse_prompt_embeddings,  # prompt point和box嵌入 [1, 3, 256]
            dense_prompt_embeddings=dense_prompt_embeddings,  # prompt mask嵌入[1, 256, 64, 64]
        )  # 输出mask.size()=[1,4,256,256], iou_pred.size()=[1,4]

        # Select the correct mask or masks for output
        if multimask_output:
            mask_slice = slice(1, None)   # 从索引1开始取后面全部
        else:
            mask_slice = slice(0, 1)   # 从索引0开始取到1结束
        masks = masks[:, mask_slice, :, :]  # [1, 3, 256, 256]
        iou_pred = iou_pred[:, mask_slice]  # [1, 3]

        return masks, iou_pred

传送门:【python函数】内置函数slice()用法解析

f o r w a r d {forward} forward 的过程中主要完成了 predict_masks 函数调用;而在 _ _ i n i t _ _ {\\init\\} __init__函数中定义了 t r a n s f o r m e r {transformer} transformer , o u t p u t _ u p s c a l i n g {output\_upscaling} output_upscaling , o u t p u t _ h y p e r n e t w o r k s _ m l p s {output\_hypernetworks\_mlps} output_hypernetworks_mlps 和 i o u _ p r e d i c t i o n _ h e a d {iou\_prediction\_head} iou_prediction_head 这四个玩意儿,接下来咱来瞅瞅他们是啥样的。


① transformer: 在【segment_anything/build_sam.py】中可以看到为transformer定义为TwoWayTransformer,prompt_embed_dim参数为256。

python 复制代码
        mask_decoder=MaskDecoder(
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=prompt_embed_dim,  # 256
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        ),

TwoWayTransformer 结构如下:

python 复制代码
class TwoWayTransformer(nn.Module):
    def __init__(
        self,
        depth: int,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
    ) -> None:
        
        super().__init__()
        self.depth = depth   # =2
        self.embedding_dim = embedding_dim  # =256
        self.num_heads = num_heads  # =8
        self.mlp_dim = mlp_dim  # =2048
        self.layers = nn.ModuleList()

        # 2个TwoWayAttentionBlock模块
        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,  # 256
                    num_heads=num_heads,  # 8
                    mlp_dim=mlp_dim,  # 2048
                    activation=activation,  # nn.ReLU
                    attention_downsample_rate=attention_downsample_rate,  # 降采样率=2
                    skip_first_layer_pe=(i == 0),  # 第1个TwoWayAttentionBlock为True, 第2个TwoWayAttentionBlock为False
                )
            )
        # 1个Attention模块
        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(
        self,
        image_embedding: Tensor,  # 图像编码:[1,256,64,64]
        image_pe: Tensor,   # 图像位置编码:[1,256,64,64]
        point_embedding: Tensor,   # iou_token,mask_tokens和sparse_prompt_embeddings的拼接向量:[1,8,256]
    ) -> Tuple[Tensor, Tensor]:
       
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w = image_embedding.shape  # [1, 256, 64, 64]
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)  # [1,4096,256]
        image_pe = image_pe.flatten(2).permute(0, 2, 1)   # [1,4096,256]

        # Prepare queries
        queries = point_embedding  # 查询Q:[1,8,256]
        keys = image_embedding     # 键值K:[1,4096,256]

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )  # 经过两个TwoWayAttentionBlock后, queries:[1,8,256], keys:[1,4096,256]

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding  # [1,8,256]
        k = keys + image_pe  # [1,4096,256]

        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)  # [1,8,256]
        queries = queries + attn_out  # [1,8,256]
        queries = self.norm_final_attn(queries)  # [1,8,256]

        return queries, keys

Attention 结构如下:

以TwoWayAttentionBlock的第一个Attention模块为例,即:

python 复制代码
# embedding_dim = 256, num_heads=8
self.self_attn = Attention(embedding_dim, num_heads) 

Attention模块主要实现了Transformer中基本的attention机制,若参数downsample_rate不为1,则会先对维度进行下采样映射:

python 复制代码
class Attention(nn.Module):

    def __init__(
        self,
        embedding_dim: int,   # 256
        num_heads: int,   # 8
        downsample_rate: int = 1,   # 1
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim   # 256
        self.internal_dim = embedding_dim // downsample_rate   # 256
        self.num_heads = num_heads   # 8
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)   # (256,256)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        # 输入q:[1,8,256];k:[1,8,256];v:[1,8,256]
        q = self.q_proj(q)  # [1,8,256]
        k = self.k_proj(k)  # [1,8,256]
        v = self.v_proj(v)  # [1,8,256]

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)  # [1,8,8,32]
        k = self._separate_heads(k, self.num_heads)  # [1,8,8,32]
        v = self._separate_heads(v, self.num_heads)  # [1,8,8,32]

        _, _, _, c_per_head = q.shape   # 每个head的维度c_per_head=32
        # attention机制-----------------------------------------------------------------------
        # 每个head实现q乘k的转置: [1,8,8,32]@[1,8,32,8]->[1,8,8,8]
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)  # q @ k(^T) / 根号d
        attn = torch.softmax(attn, dim=-1)  # [1,8,8,8]
        # -----------------------------------------------------------------------------------
        # Get output
        out = attn @ v   # softmax( q @ k(^T) / 根号d ) @ v ---> [1,8,8,32]
        out = self._recombine_heads(out)  # [1,8,256]
        out = self.out_proj(out)  # [1,8,256]
 
        return out

为避免代码看的太晕,把Attention可视化一下,没错,就是最基本的Multi-head Attention啦~

TwoWayAttentionBlock 结构如下:

以TwoWayTransformer的第一个TwoWayAttentionBlock模块为例,即:

python 复制代码
TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,  # 256
                    num_heads=num_heads,  # 8
                    mlp_dim=mlp_dim,  # 2048
                    activation=activation,  # nn.ReLU
                    attention_downsample_rate=attention_downsample_rate,  # 降采样率=2
                    skip_first_layer_pe=(i == 0),  # 第1个TwoWayAttentionBlock为True
                    )

TwoWayAttentionBlock模块:

python 复制代码
class TwoWayAttentionBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int = 2048,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
        skip_first_layer_pe: bool = False,
    ) -> None:
        
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)   # embedding_dim=256, num_heads=8
        self.norm1 = nn.LayerNorm(embedding_dim)  # 256

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )   # embedding_dim=256, num_heads=8, attention_downsample_rate=2
        self.norm2 = nn.LayerNorm(embedding_dim)  # 256

        # embedding_dim=256, mlp_dim=2048, activation=nn.ReLU
        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
        self.norm3 = nn.LayerNorm(embedding_dim)  # 256

        self.norm4 = nn.LayerNorm(embedding_dim)  # 256
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )   # embedding_dim=256, num_heads=8, attention_downsample_rate=2

        self.skip_first_layer_pe = skip_first_layer_pe  # True

    def forward(
        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
    ) -> Tuple[Tensor, Tensor]:
        # 输入queries:[1,8,256], keys:[1,4096,256], query_pe:[1,8,256], key_pe:[1,4096,256]
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)  # [1,8,256]
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)  # [1,8,256]

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe  # [1,8,256]
        k = keys + key_pe  # [1,4096,256]
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)  # [1,8,256]
        queries = queries + attn_out  # [1,8,256]
        queries = self.norm2(queries)  # [1,8,256]

        # MLP block
        mlp_out = self.mlp(queries)   # [1,8,256]
        queries = queries + mlp_out   # [1,8,256]
        queries = self.norm3(queries)  # [1,8,256]

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe    # [1,8,256]
        k = keys + key_pe   # [1,4096,256]
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)  # [1,4096,256]
        keys = keys + attn_out  # [1,4096,256]
        keys = self.norm4(keys)  # [1,4096,256]

        return queries, keys

可以看到TwoWayTransformer的结构以及token维度变化并不复杂,但其交错的 Q {Q} Q, K {K} K, V {V} V 确实令人眼花缭乱:

TwoWayTransformer中的MLP:

python 复制代码
class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        # embedding_dim=256, mlp_dim=2048
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)  
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))

MLP为简单的线性、激活、线性结构:


② output_upscaling:

python 复制代码
Sequential(
  (0): ConvTranspose2d(256, 64, kernel_size=(2, 2), stride=(2, 2))
  (1): LayerNorm2d()
  (2): GELU(approximate='none')
  (3): ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2))
  (4): GELU(approximate='none')
)

output_upscaling模块由两个反卷积、两个GELU激活和一个LayerNorm组成,实现了特征图的四倍上采样,在 predict_masks函数 中将 [ 1 , 256 , 64 , 64 ] {[1,256,64,64]} [1,256,64,64] 上采样至 [ 1 , 32 , 256 , 256 ] {[1,32,256,256]} [1,32,256,256] 。

python 复制代码
src = src.transpose(1, 2).view(b, c, h, w)   # reshape: [1,4096,256]-> [1,256,64,64]
upscaled_embedding = self.output_upscaling(src) # [1,32,256,256]

③ output_hypernetworks_mlps:

python 复制代码
ModuleList(
  (0-3): 4 x MLP(
    (layers): ModuleList(
      (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
      (2): Linear(in_features=256, out_features=32, bias=True)
    )
  )
)

output_hypernetworks_mlps由4个MLP组成,在 predict_masks函数 中将 [ 1 , 256 ] {[1,256]} [1,256] 下采样至 [ 1 , 32 ] {[1,32]} [1,32] 。与TwoWayAttentionBlock中的MLP不同,其结构稍稍多一丢丢:

python 复制代码
class MLP(nn.Module):
    def __init__(
            self,
            input_dim: int,   # 256
            hidden_dim: int,  # 256
            output_dim: int,  # 32
            num_layers: int,  # 3
            sigmoid_output: bool = False,  # False
    ) -> None:
        super().__init__()
        self.num_layers = num_layers  # 3
        h = [hidden_dim] * (num_layers - 1)  # [256,256]
        self.layers = nn.ModuleList(
            # [input_dim] + h: [256,256,256], h + [output_dim]:[256,256,32]
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
        	# i<2经线性层后relu激活
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)  
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x

④ iou_prediction_head:

python 复制代码
MLP(
  (layers): ModuleList(
    (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
    (2): Linear(in_features=256, out_features=4, bias=True)
  )
)

iou_prediction_head用以实现iou预测,由1个MLP完成,其结构与output_hypernetworks_mlps中的MLP一样,只是最终将 [ 1 , 256 ] {[1,256]} [1,256] 映射至 [ 1 , 4 ] {[1,4]} [1,4] ,分别代表非multimask预测时的1个mask和multimask预测时的3个mask的iou。


(3)predict_masks函数

位置: 【segment_anything/modeling/mask_decoder.py --> MaskDecoder类 --> predict_masks函数】
作用: 利用上述 t r a n s f o r m e r {transformer} transformer , o u t p u t _ u p s c a l i n g {output\_upscaling} output_upscaling , o u t p u t _ h y p e r n e t w o r k s _ m l p s {output\_hypernetworks\_mlps} output_hypernetworks_mlps 和 i o u _ p r e d i c t i o n _ h e a d {iou\_prediction\_head} iou_prediction_head 四个模块,实现mask和iou预测

此时此刻,首先来重温一下,传入predict_masks函数的参数分别是什么:

① image_embeddings:image encoder嵌入,大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64] ;

② image_pe:图像嵌入大小对应的位置编码,大小同为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64] ;

③ sparse_prompt_embeddings:prompt point和box嵌入,大小为 [ 1 , 3 , 256 ] {[1, 3, 256]} [1,3,256] ;

④ dense_prompt_embeddings:prompt mask嵌入,大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64] ;

python 复制代码
def predict_masks(
        self,
        image_embeddings: torch.Tensor,  # [1, 256, 64, 64]
        image_pe: torch.Tensor,  # [1, 256, 64, 64]
        sparse_prompt_embeddings: torch.Tensor,  # [1, 3, 256]
        dense_prompt_embeddings: torch.Tensor,  # [1, 256, 64, 64]
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Predicts masks. See 'forward' for more details."""
    # Concatenate output tokens
    # 拼接iou的token和mask的token: [1,256]+[4,256]->[5,256]
    output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
    output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)  # [1,5,256]
    # iou的token和mask的token + prompt point和box嵌入
    tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)  # [1,8,256]

    # Expand per-image data in batch direction to be per-mask
    src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)  # 按batch重复: [1,256,64,64]
    src = src + dense_prompt_embeddings  # [1,256,64,64]
    pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)  # 按batch重复: [1,256,64,64]
    b, c, h, w = src.shape  # 1,256,64,64

    # Run the transformer
    # src是image encoder嵌入和prompt mask嵌入
    # pos_src是图像嵌入大小对应的位置编码
    # tokens是iou的token和mask的token + prompt point和box嵌入
    hs, src = self.transformer(src, pos_src, tokens)  # hs:[1,8,256], src:[1,4096,256]
    iou_token_out = hs[:, 0, :]  # 第1个为iou的token输出[1,256]
    mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]  # 随后4个为mask的token输出[4,256]

    # Upscale mask embeddings and predict masks using the mask tokens
    src = src.transpose(1, 2).view(b, c, h, w)   # reshape: [1,4096,256]-> [1,256,64,64]
    upscaled_embedding = self.output_upscaling(src)  # [1,32,256,256]
    hyper_in_list: List[torch.Tensor] = []
    for i in range(self.num_mask_tokens):
        hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
    hyper_in = torch.stack(hyper_in_list, dim=1)  # [1,4,32]
    b, c, h, w = upscaled_embedding.shape  # 1,32,256,256
    
    masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)  # [1,4,256,256]

    # Generate mask quality predictions
    iou_pred = self.iou_prediction_head(iou_token_out)  # [1,4]

    return masks, iou_pred

由此可见,经TwoWayTransformer获得了iou_token_out和mask_tokens_out,iou_token_out由iou_prediction_head(1个MLP)实现iou预测,4个mask_tokens_out分别经过1个MLP所获得的映射拼接后,与经过output_upscaling上采样后的图像嵌入(包含image encoder嵌入和prompt mask嵌入)进行矩阵相乘,得到mask预测。


2. Mask Decoder结构绘制

(1)结构打印

python 复制代码
MaskDecoder(
  (transformer): TwoWayTransformer(
    (layers): ModuleList(
      (0-1): 2 x TwoWayAttentionBlock(
        (self_attn): Attention(
          (q_proj): Linear(in_features=256, out_features=256, bias=True)
          (k_proj): Linear(in_features=256, out_features=256, bias=True)
          (v_proj): Linear(in_features=256, out_features=256, bias=True)
          (out_proj): Linear(in_features=256, out_features=256, bias=True)
        )
        (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        (cross_attn_token_to_image): Attention(
          (q_proj): Linear(in_features=256, out_features=128, bias=True)
          (k_proj): Linear(in_features=256, out_features=128, bias=True)
          (v_proj): Linear(in_features=256, out_features=128, bias=True)
          (out_proj): Linear(in_features=128, out_features=256, bias=True)
        )
        (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        (mlp): MLPBlock(
          (lin1): Linear(in_features=256, out_features=2048, bias=True)
          (lin2): Linear(in_features=2048, out_features=256, bias=True)
          (act): ReLU()
        )
        (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        (norm4): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        (cross_attn_image_to_token): Attention(
          (q_proj): Linear(in_features=256, out_features=128, bias=True)
          (k_proj): Linear(in_features=256, out_features=128, bias=True)
          (v_proj): Linear(in_features=256, out_features=128, bias=True)
          (out_proj): Linear(in_features=128, out_features=256, bias=True)
        )
      )
    )
    (final_attn_token_to_image): Attention(
      (q_proj): Linear(in_features=256, out_features=128, bias=True)
      (k_proj): Linear(in_features=256, out_features=128, bias=True)
      (v_proj): Linear(in_features=256, out_features=128, bias=True)
      (out_proj): Linear(in_features=128, out_features=256, bias=True)
    )
    (norm_final_attn): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
  )
  (iou_token): Embedding(1, 256)
  (mask_tokens): Embedding(4, 256)
  (output_upscaling): Sequential(
    (0): ConvTranspose2d(256, 64, kernel_size=(2, 2), stride=(2, 2))
    (1): LayerNorm2d()
    (2): GELU(approximate='none')
    (3): ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2))
    (4): GELU(approximate='none')
  )
  (output_hypernetworks_mlps): ModuleList(
    (0-3): 4 x MLP(
      (layers): ModuleList(
        (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
        (2): Linear(in_features=256, out_features=32, bias=True)
      )
    )
  )
  (iou_prediction_head): MLP(
    (layers): ModuleList(
      (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
      (2): Linear(in_features=256, out_features=4, bias=True)
    )
  )
)

(2)结构绘制

整体结构就是这样的啦,完结,撒花~

相关推荐
张人玉几秒前
人工智能——猴子摘香蕉问题
人工智能
草莓屁屁我不吃5 分钟前
Siri因ChatGPT-4o升级:我们的个人信息还安全吗?
人工智能·安全·chatgpt·chatgpt-4o
小言从不摸鱼8 分钟前
【AI大模型】ChatGPT模型原理介绍(下)
人工智能·python·深度学习·机器学习·自然语言处理·chatgpt
AI科研视界30 分钟前
ChatGPT+2:修订初始AI安全性和超级智能假设
人工智能·chatgpt
霍格沃兹测试开发学社测试人社区33 分钟前
人工智能 | 基于ChatGPT开发人工智能服务平台
软件测试·人工智能·测试开发·chatgpt
小R资源1 小时前
3款免费的GPT类工具
人工智能·gpt·chatgpt·ai作画·ai模型·国内免费
artificiali4 小时前
Anaconda配置pytorch的基本操作
人工智能·pytorch·python
酱香编程,风雨兼程4 小时前
深度学习——基础知识
人工智能·深度学习
Lossya4 小时前
【机器学习】参数学习的基本概念以及贝叶斯网络的参数学习和马尔可夫随机场的参数学习
人工智能·学习·机器学习·贝叶斯网络·马尔科夫随机场·参数学习
#include<菜鸡>5 小时前
动手学深度学习(pytorch土堆)-04torchvision中数据集的使用
人工智能·pytorch·深度学习