Spark算子 - Python

第1关:Transformation - map

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext
 
if __name__ == "__main__":
    #********** Begin **********#
 
    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local","Simple App")
    # 2.创建一个1到5的列表List
    List = [1,2,3,4,5]
    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(List)
    # 4.使用rdd.collect() 收集 rdd 的元素。
    print(rdd.collect())
 
    """
    使用 map 算子,将 rdd 的数据 (1, 2, 3, 4, 5) 按照下面的规则进行转换操作,规则如下:
    需求:
        偶数转换成该数的平方
        奇数转换成该数的立方
    """
 
    # 5.使用 map 算子完成以上需求
    rdd_map = rdd.map(lambda x:(x*x if (x%2==0) else x*x*x))
    # 6.使用rdd.collect() 收集完成 map 转换的元素
    print(rdd_map.collect())
    # 7.停止 SparkContext
    sc.stop()
 
    #********** End **********#

第2关:Transformation - mapPartitions

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext
 
#********** Begin **********#
def f(iterator):
    list = []
    for x in iterator:
        list.append((x,len(x)))
    return list
#********** End **********#
 
if __name__ == "__main__":
    #********** Begin **********#
    
    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local","Simple App")
    # 2. 一个内容为("dog", "salmon", "salmon", "rat", "elephant")的列表List
    data = ["dog", "salmon", "salmon", "rat", "elephant"]
    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)
    # 4.使用rdd.collect() 收集 rdd 的元素。
    print(rdd.collect())
 
    """
    使用 mapPartitions 算子,将 rdd 的数据 ("dog", "salmon", "salmon", "rat", "elephant") 按照下面的规则进行转换操作,规则如下:
    需求:
        将字符串与该字符串的长度组合成一个元组,例如:
        dog  -->  (dog,3)
        salmon   -->  (salmon,6)
    """
 
    # 5.使用 mapPartitions 算子完成以上需求
    partitions = rdd.mapPartitions(f)
    # 6.使用rdd.collect() 收集完成 mapPartitions 转换的元素
    print(partitions.collect())
    # 7.停止 SparkContext
    sc.stop()
 
    #********** End **********#

第3关:Transformation - filter

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext
 
if __name__ == "__main__":
    #********** Begin **********#
 
    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local","Simple App")
    # 2.创建一个1到8的列表List
    data = [1,2,3,4,5,6,7,8]
    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)
    # 4.使用rdd.collect() 收集 rdd 的元素。
    print(rdd.collect())
 
    """
    使用 filter 算子,将 rdd 的数据 (1, 2, 3, 4, 5, 6, 7, 8) 按照下面的规则进行转换操作,规则如下:
    需求:
        过滤掉rdd中的奇数
    """
    # 5.使用 filter 算子完成以上需求
    rdd_filter = rdd.filter(lambda x:x%2==0)
    # 6.使用rdd.collect() 收集完成 filter 转换的元素
    print(rdd_filter.collect())
    # 7.停止 SparkContext
    sc.stop()
 
    #********** End **********#

第4关:Transformation - flatMap

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext

if __name__ == "__main__":
       #********** Begin **********#
       
    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local","Simple App")
    # 2.创建一个[[1, 2, 3], [4, 5, 6], [7, 8, 9]] 的列表List
    data = [[1,2,3],[4,5,6],[7,8,9]]
    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)
    # 4.使用rdd.collect() 收集 rdd 的元素。
    print(rdd.collect())
    """
        使用 flatMap 算子,将 rdd 的数据 ([1, 2, 3], [4, 5, 6], [7, 8, 9]) 按照下面的规则进行转换操作,规则如下:
        需求:
            合并RDD的元素,例如:
                            ([1,2,3],[4,5,6])  -->  (1,2,3,4,5,6)
                            ([2,3],[4,5],[6])  -->  (1,2,3,4,5,6)
        """
    # 5.使用 filter 算子完成以上需求
    flat_map = rdd.flatMap(lambda x:x)
    # 6.使用rdd.collect() 收集完成 filter 转换的元素
    print(flat_map.collect())
    # 7.停止 SparkContext
    sc.stop()
    #********** End **********#

第5关:Transformation - distinct

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext

if __name__ == "__main__":
    #********** Begin **********#

    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local","Simple App")

    # 2.创建一个内容为(1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1)的列表List
    data = [1,2,3,4,5,6,5,4,3,2,1]

    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)

    # 4.使用rdd.collect() 收集 rdd 的元素
    print(rdd.collect())

    """
       使用 distinct 算子,将 rdd 的数据 (1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1) 按照下面的规则进行转换操作,规则如下:
       需求:
           元素去重,例如:
                        1,2,3,3,2,1  --> 1,2,3
                        1,1,1,1,     --> 1
       """
    # 5.使用 distinct 算子完成以上需求
    a = rdd.distinct()

    # 6.使用rdd.collect() 收集完成 distinct 转换的元素
    print(a.collect())

    # 7.停止 SparkContext
    sc.stop()

    #********** End **********#

第6关:Transformation - sortBy

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext

if __name__ == "__main__":
    # ********** Begin **********#

    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local", "Simple App")

    # 2.创建一个内容为(1, 3, 5, 7, 9, 8, 6, 4, 2)的列表List
    data = [1,3,5,7,9,8,6,4,2]

    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)

    # 4.使用rdd.collect() 收集 rdd 的元素
    print(rdd.collect())


    """
       使用 sortBy 算子,将 rdd 的数据 (1, 3, 5, 7, 9, 8, 6, 4, 2) 按照下面的规则进行转换操作,规则如下:
       需求:
           元素排序,例如:
            5,4,3,1,2  --> 1,2,3,4,5
       """
    # 5.使用 sortBy 算子完成以上需求
    a = rdd.sortBy(lambda x:x)

    # 6.使用rdd.collect() 收集完成 sortBy 转换的元素
    print(a.collect())

    # 7.停止 SparkContext
    sc.stop()

    #********** End **********#

第7关:Transformation - sortByKey

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext

if __name__ == "__main__":
    # ********** Begin **********#

    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local", "Simple App")

    # 2.创建一个内容为[(B',1),('A',2),('C',3)]的列表List
    data = [("B",1),("A",2),("C",3)]

    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)

    # 4.使用rdd.collect() 收集 rdd 的元素
    print(rdd.collect())

    """
       使用 sortByKey 算子,将 rdd 的数据 ('B', 1), ('A', 2), ('C', 3) 按照下面的规则进行转换操作,规则如下:
       需求:
           元素排序,例如:
            [(3,3),(2,2),(1,1)]  -->  [(1,1),(2,2),(3,3)]
       """
    # 5.使用 sortByKey 算子完成以上需求
    a = rdd.sortByKey()

    # 6.使用rdd.collect() 收集完成 sortByKey 转换的元素
    print(a.collect())

    # 7.停止 SparkContext
    sc.stop()

    # ********** End **********#

第8关:Transformation - mapValues

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext

if __name__ == "__main__":
    # ********** Begin **********#

    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local", "Simple App")

    # 2.创建一个内容为[("1", 1), ("2", 2), ("3", 3), ("4", 4), ("5", 5)]的列表List
    data = [("1",1),("2",2),("3",3),("4",4),("5",5)]

    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)

    # 4.使用rdd.collect() 收集 rdd 的元素
    print(rdd.collect())

    """
           使用 mapValues 算子,将 rdd 的数据 ("1", 1), ("2", 2), ("3", 3), ("4", 4), ("5", 5) 按照下面的规则进行转换操作,规则如下:
           需求:
               元素(key,value)的value进行以下操作:
                                                偶数转换成该数的平方
                                                奇数转换成该数的立方
    """
    # 5.使用 mapValues 算子完成以上需求
    a = rdd.mapValues(lambda x:x*x if x%2==0 else x*x*x)

    # 6.使用rdd.collect() 收集完成 mapValues 转换的元素
    print(a.collect())

    # 7.停止 SparkContext
    sc.stop()

    # ********** End **********#

第9关:Transformations - reduceByKey

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext

if __name__ == "__main__":
    # ********** Begin **********#

    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local", "Simple App")

    # 2.创建一个内容为[("python", 1), ("scala", 2), ("python", 3), ("python", 4), ("java", 5)]的列表List
    data = [("python", 1), ("scala", 2), ("python", 3), ("python", 4), ("java", 5)]

    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)

    # 4.使用rdd.collect() 收集 rdd 的元素
    print(rdd.collect())

    """
          使用 reduceByKey 算子,将 rdd 的数据[("python", 1), ("scala", 2), ("python", 3), ("python", 4), ("java", 5)] 按照下面的规则进行转换操作,规则如下:
          需求:
              元素(key-value)的value累加操作,例如:
                                                (1,1),(1,1),(1,2)  --> (1,4)
                                                (1,1),(1,1),(2,2),(2,2)  --> (1,2),(2,4)
    """
    # 5.使用 reduceByKey 算子完成以上需求
    a = rdd.reduceByKey(lambda x,y:x+y)

    # 6.使用rdd.collect() 收集完成 reduceByKey 转换的元素
    print(a.collect())

    # 7.停止 SparkContext
    sc.stop()

    # ********** End **********#

第10关:Actions - 常用算子

python 复制代码
# -*- coding: UTF-8 -*-
from pyspark import SparkContext
 
if __name__ == "__main__":
    # ********** Begin **********#
 
    # 1.初始化 SparkContext,该对象是 Spark 程序的入口
    sc = SparkContext("local","Simple App")
    # 2.创建一个内容为[1, 3, 5, 7, 9, 8, 6, 4, 2]的列表List
    data = [1, 3, 5, 7, 9, 8, 6, 4, 2]
    # 3.通过 SparkContext 并行化创建 rdd
    rdd = sc.parallelize(data)
    # 4.收集rdd的所有元素并print输出
    print(rdd.collect())
    # 5.统计rdd的元素个数并print输出
    print(rdd.count())
    # 6.获取rdd的第一个元素并print输出
    print(rdd.first())
    # 7.获取rdd的前3个元素并print输出
    print(rdd.take(3))
    # 8.聚合rdd的所有元素并print输出
    print(rdd.reduce(lambda x,y:x+y))
    # 9.停止 SparkContext
    sc.stop()
 
    # ********** End **********#
相关推荐
_.Switch20 分钟前
高级Python自动化运维:容器安全与网络策略的深度解析
运维·网络·python·安全·自动化·devops
测开小菜鸟1 小时前
使用python向钉钉群聊发送消息
java·python·钉钉
萧鼎3 小时前
Python并发编程库:Asyncio的异步编程实战
开发语言·数据库·python·异步
学地理的小胖砸3 小时前
【一些关于Python的信息和帮助】
开发语言·python
疯一样的码农3 小时前
Python 继承、多态、封装、抽象
开发语言·python
Python大数据分析@3 小时前
python操作CSV和excel,如何来做?
开发语言·python·excel
黑叶白树3 小时前
简单的签到程序 python笔记
笔记·python
lzhlizihang4 小时前
【spark的集群模式搭建】Standalone集群模式的搭建(简单明了的安装教程)
spark·standalone模式·spark集群搭建
Shy9604184 小时前
Bert完形填空
python·深度学习·bert
上海_彭彭4 小时前
【提效工具开发】Python功能模块执行和 SQL 执行 需求整理
开发语言·python·sql·测试工具·element