transform学习资料

一、NLP:自然语言处理

NLP 是机器学习在语言学领域的研究,专注于理解与人类语言相关的一切。NLP 的目标不仅是要理解每个单独的单词,而且能理解这些单词与之相关联的上下文之间的意思。

常见的NLP 任务列表:

  • 对整句的分类:如获取评论的好坏、垃圾邮件的分类,如判断两个句子的逻辑相关性;
  • 对句中单词的分类:如单词的语法构成(名词、动词、形容词)、单词的实体命名(人、地点、时间)
  • 文本内容的生成:如文章续写、屏蔽词填充;
  • 语义提取:给定问题,根据上下文信息提前答案;
  • 从提示文本生成新句子:如文本翻译、文本总结;

NLP 并不局限于书面文本,它也能解决语音识别、计算机视觉方方面的问题,如生成音频样本的转录、图像的描述等;

二、Transformer

Hugging Face Hub 社区是最大的Transformer 开发者的交流地,里面分享了数千个预训练模型,任何人都可以下载和使用。而Transformers 库提供了创建和使用这些共享模型的功能。

python 复制代码
# # 安装
pip install transformers

# # 导入
import transformers

2.1、pipeline() 管道函数

Transformers 库最基本的对象是pipeline ()管道函数,它将必要的预处理后处理连接起来,使我们能直接输入文本并获取对应需求的答案。将文本传递到管道时主要涉及三个步骤:

  1. 人类可理解的文本被预处理为模型可理解的数据格式;
  2. 将可理解的数据传递给模型,模型做出预测;
  3. 模型的预测再经过后处理,输出人类可理解的文本。

情感分析

python 复制代码
from transformers import pipeline

classifier = pipeline("sentiment-analysis")
classifier("I've been waiting for a HuggingFace course my whole life.")
# # [{'label': 'POSITIVE', 'score': 0.9598047137260437}]

classifier(["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"])

##  [{'label': 'POSITIVE', 'score': 0.9598047137260437},
##   {'label': 'NEGATIVE', 'score': 0.9994558095932007}]

零样本分类

python 复制代码
from transformers import pipeline

classifier = pipeline("zero-shot-classification")
classifier("This is a course about the Transformers library",
    candidate_labels=["education", "politics", "business"])

2.1、

2.1、

相关推荐
AI袋鼠帝4 分钟前
腾讯出手了!首款国产AI CLI真有点猛,支持微信登录
aigc·ai编程·腾讯
德育处主任6 分钟前
讲真,文心一言X1.1出来后,我骗不到它了!
人工智能·llm·aigc
Mintopia21 分钟前
🌐 Web3.0 时代:AIGC 如何赋能去中心化内容生态?
前端·javascript·aigc
AI炼金师38 分钟前
Alex Codes团队并入OpenAI Codex:苹果生态或迎来AI编程新篇章
aigc·ai编程
北京地铁1号线14 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
coder_pig16 小时前
👦抠腚男孩的AI学习之旅 | 6、玩转 LangChain (二)
langchain·aigc·agent
机器学习之心17 小时前
分解+优化+预测!CEEMDAN-Kmeans-VMD-DOA-Transformer-LSTM多元时序预测
lstm·transformer·kmeans·多元时序预测·双分解
会写代码的饭桶17 小时前
通俗理解 LSTM 的三门机制:从剧情记忆到科学原理
人工智能·rnn·lstm·transformer
洞窝技术18 小时前
洞窝基于RAG+Dify+钉钉快速搭建智能问答工具的落地实践
aigc·openai
闲看云起19 小时前
从BERT到T5:为什么说T5是NLP的“大一统者”?
人工智能·语言模型·transformer