transform学习资料

一、NLP:自然语言处理

NLP 是机器学习在语言学领域的研究,专注于理解与人类语言相关的一切。NLP 的目标不仅是要理解每个单独的单词,而且能理解这些单词与之相关联的上下文之间的意思。

常见的NLP 任务列表:

  • 对整句的分类:如获取评论的好坏、垃圾邮件的分类,如判断两个句子的逻辑相关性;
  • 对句中单词的分类:如单词的语法构成(名词、动词、形容词)、单词的实体命名(人、地点、时间)
  • 文本内容的生成:如文章续写、屏蔽词填充;
  • 语义提取:给定问题,根据上下文信息提前答案;
  • 从提示文本生成新句子:如文本翻译、文本总结;

NLP 并不局限于书面文本,它也能解决语音识别、计算机视觉方方面的问题,如生成音频样本的转录、图像的描述等;

二、Transformer

Hugging Face Hub 社区是最大的Transformer 开发者的交流地,里面分享了数千个预训练模型,任何人都可以下载和使用。而Transformers 库提供了创建和使用这些共享模型的功能。

python 复制代码
# # 安装
pip install transformers

# # 导入
import transformers

2.1、pipeline() 管道函数

Transformers 库最基本的对象是pipeline ()管道函数,它将必要的预处理后处理连接起来,使我们能直接输入文本并获取对应需求的答案。将文本传递到管道时主要涉及三个步骤:

  1. 人类可理解的文本被预处理为模型可理解的数据格式;
  2. 将可理解的数据传递给模型,模型做出预测;
  3. 模型的预测再经过后处理,输出人类可理解的文本。

情感分析

python 复制代码
from transformers import pipeline

classifier = pipeline("sentiment-analysis")
classifier("I've been waiting for a HuggingFace course my whole life.")
# # [{'label': 'POSITIVE', 'score': 0.9598047137260437}]

classifier(["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"])

##  [{'label': 'POSITIVE', 'score': 0.9598047137260437},
##   {'label': 'NEGATIVE', 'score': 0.9994558095932007}]

零样本分类

python 复制代码
from transformers import pipeline

classifier = pipeline("zero-shot-classification")
classifier("This is a course about the Transformers library",
    candidate_labels=["education", "politics", "business"])

2.1、

2.1、

相关推荐
机器学习之心13 小时前
SHAP分析!Transformer-GRU组合模型SHAP分析,模型可解释不在发愁!
深度学习·gru·transformer·shap分析
璇转的鱼15 小时前
Stable Diffusion进阶之Controlnet插件使用
人工智能·ai作画·stable diffusion·aigc·ai绘画
四口鲸鱼爱吃盐17 小时前
CVPR2025 | Prompt-CAM: 让视觉 Transformer 可解释以进行细粒度分析
深度学习·prompt·transformer
s1ckrain21 小时前
【论文阅读】FreePCA
论文阅读·计算机视觉·aigc
猫头虎21 小时前
5G-A来了!5G信号多个A带来哪些改变?
5g·机器人·web3·aigc·社交电子·能源·量子计算
sbc-study1 天前
大规模预训练范式(Large-scale Pre-training)
gpt·学习·transformer
摆烂仙君1 天前
无偿帮写毕业论文
aigc·论文笔记·毕设
jzwei0231 天前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
chennalC#c.h.JA Ptho1 天前
生成了一个AI算法
经验分享·笔记·aigc
music&movie2 天前
手写系列——transformer网络完成加法和字符转译任务
网络·人工智能·transformer