transform学习资料

一、NLP:自然语言处理

NLP 是机器学习在语言学领域的研究,专注于理解与人类语言相关的一切。NLP 的目标不仅是要理解每个单独的单词,而且能理解这些单词与之相关联的上下文之间的意思。

常见的NLP 任务列表:

  • 对整句的分类:如获取评论的好坏、垃圾邮件的分类,如判断两个句子的逻辑相关性;
  • 对句中单词的分类:如单词的语法构成(名词、动词、形容词)、单词的实体命名(人、地点、时间)
  • 文本内容的生成:如文章续写、屏蔽词填充;
  • 语义提取:给定问题,根据上下文信息提前答案;
  • 从提示文本生成新句子:如文本翻译、文本总结;

NLP 并不局限于书面文本,它也能解决语音识别、计算机视觉方方面的问题,如生成音频样本的转录、图像的描述等;

二、Transformer

Hugging Face Hub 社区是最大的Transformer 开发者的交流地,里面分享了数千个预训练模型,任何人都可以下载和使用。而Transformers 库提供了创建和使用这些共享模型的功能。

python 复制代码
# # 安装
pip install transformers

# # 导入
import transformers

2.1、pipeline() 管道函数

Transformers 库最基本的对象是pipeline ()管道函数,它将必要的预处理后处理连接起来,使我们能直接输入文本并获取对应需求的答案。将文本传递到管道时主要涉及三个步骤:

  1. 人类可理解的文本被预处理为模型可理解的数据格式;
  2. 将可理解的数据传递给模型,模型做出预测;
  3. 模型的预测再经过后处理,输出人类可理解的文本。

情感分析

python 复制代码
from transformers import pipeline

classifier = pipeline("sentiment-analysis")
classifier("I've been waiting for a HuggingFace course my whole life.")
# # [{'label': 'POSITIVE', 'score': 0.9598047137260437}]

classifier(["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"])

##  [{'label': 'POSITIVE', 'score': 0.9598047137260437},
##   {'label': 'NEGATIVE', 'score': 0.9994558095932007}]

零样本分类

python 复制代码
from transformers import pipeline

classifier = pipeline("zero-shot-classification")
classifier("This is a course about the Transformers library",
    candidate_labels=["education", "politics", "business"])

2.1、

2.1、

相关推荐
墨风如雪3 小时前
OpenAI 甩出王炸:GPT-5.2-Codex 上线,这次它想做你的“赛博合伙人”
aigc
智界前沿8 小时前
集之互动AI创意视频解决方案:商业级可控,让品牌创意从“灵感”直达“落地”
人工智能·aigc
chuntian_tester11 小时前
Qwen通义千问大模型
测试工具·aigc
Java后端的Ai之路12 小时前
【分析式AI】-过拟合(含生活案例说明)
人工智能·aigc·生活·过拟合·分析式ai
hopsky14 小时前
经典Transformer的PyTorch实现
pytorch·深度学习·transformer
imbackneverdie14 小时前
AI工具如何重塑综述写作新体验
数据库·人工智能·考研·自然语言处理·aigc·论文·ai写作
阿杰学AI16 小时前
AI核心知识57——大语言模型之MoE(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·ai-native·moe·混合专家模型
用户479492835691516 小时前
拆包、立边界、可发布:Gemini CLI 的 Monorepo 设计我学到了什么
aigc·agent·ai编程
程序员X小鹿16 小时前
一句话生科普动画视频的AI工具来了,3分钟搞定教学动画!算法演示、科学原理....(附实测案例)
aigc