transform学习资料

一、NLP:自然语言处理

NLP 是机器学习在语言学领域的研究,专注于理解与人类语言相关的一切。NLP 的目标不仅是要理解每个单独的单词,而且能理解这些单词与之相关联的上下文之间的意思。

常见的NLP 任务列表:

  • 对整句的分类:如获取评论的好坏、垃圾邮件的分类,如判断两个句子的逻辑相关性;
  • 对句中单词的分类:如单词的语法构成(名词、动词、形容词)、单词的实体命名(人、地点、时间)
  • 文本内容的生成:如文章续写、屏蔽词填充;
  • 语义提取:给定问题,根据上下文信息提前答案;
  • 从提示文本生成新句子:如文本翻译、文本总结;

NLP 并不局限于书面文本,它也能解决语音识别、计算机视觉方方面的问题,如生成音频样本的转录、图像的描述等;

二、Transformer

Hugging Face Hub 社区是最大的Transformer 开发者的交流地,里面分享了数千个预训练模型,任何人都可以下载和使用。而Transformers 库提供了创建和使用这些共享模型的功能。

python 复制代码
# # 安装
pip install transformers

# # 导入
import transformers

2.1、pipeline() 管道函数

Transformers 库最基本的对象是pipeline ()管道函数,它将必要的预处理后处理连接起来,使我们能直接输入文本并获取对应需求的答案。将文本传递到管道时主要涉及三个步骤:

  1. 人类可理解的文本被预处理为模型可理解的数据格式;
  2. 将可理解的数据传递给模型,模型做出预测;
  3. 模型的预测再经过后处理,输出人类可理解的文本。

情感分析

python 复制代码
from transformers import pipeline

classifier = pipeline("sentiment-analysis")
classifier("I've been waiting for a HuggingFace course my whole life.")
# # [{'label': 'POSITIVE', 'score': 0.9598047137260437}]

classifier(["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"])

##  [{'label': 'POSITIVE', 'score': 0.9598047137260437},
##   {'label': 'NEGATIVE', 'score': 0.9994558095932007}]

零样本分类

python 复制代码
from transformers import pipeline

classifier = pipeline("zero-shot-classification")
classifier("This is a course about the Transformers library",
    candidate_labels=["education", "politics", "business"])

2.1、

2.1、

相关推荐
AIGC大时代2 小时前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
吕小明么16 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
聆思科技AI芯片1 天前
实操给桌面机器人加上超拟人音色
人工智能·机器人·大模型·aigc·多模态·智能音箱·语音交互
minos.cpp1 天前
Mac上Stable Diffusion的环境搭建(还算比较简单)
macos·ai作画·stable diffusion·aigc
AI小欧同学1 天前
【AIGC-ChatGPT进阶副业提示词】育儿锦囊:化解日常育儿难题的实用指南
chatgpt·aigc
剑盾云安全专家1 天前
AI加持,如何让PPT像开挂一键生成?
人工智能·aigc·powerpoint·软件
合合技术团队2 天前
高效准确的PDF解析工具,赋能企业非结构化数据治理
人工智能·科技·pdf·aigc·文档
程序员小灰2 天前
OpenAI正式发布o3:通往AGI的路上,已经没有了任何阻碍
人工智能·aigc·openai
deephub2 天前
LEC: 基于Transformer中间层隐藏状态的高效特征提取与内容安全分类方法
人工智能·深度学习·transformer·大语言模型·特征提取
程序边界2 天前
AIGC时代:如何打造卓越的技术文档?
aigc