transform学习资料

一、NLP:自然语言处理

NLP 是机器学习在语言学领域的研究,专注于理解与人类语言相关的一切。NLP 的目标不仅是要理解每个单独的单词,而且能理解这些单词与之相关联的上下文之间的意思。

常见的NLP 任务列表:

  • 对整句的分类:如获取评论的好坏、垃圾邮件的分类,如判断两个句子的逻辑相关性;
  • 对句中单词的分类:如单词的语法构成(名词、动词、形容词)、单词的实体命名(人、地点、时间)
  • 文本内容的生成:如文章续写、屏蔽词填充;
  • 语义提取:给定问题,根据上下文信息提前答案;
  • 从提示文本生成新句子:如文本翻译、文本总结;

NLP 并不局限于书面文本,它也能解决语音识别、计算机视觉方方面的问题,如生成音频样本的转录、图像的描述等;

二、Transformer

Hugging Face Hub 社区是最大的Transformer 开发者的交流地,里面分享了数千个预训练模型,任何人都可以下载和使用。而Transformers 库提供了创建和使用这些共享模型的功能。

python 复制代码
# # 安装
pip install transformers

# # 导入
import transformers

2.1、pipeline() 管道函数

Transformers 库最基本的对象是pipeline ()管道函数,它将必要的预处理后处理连接起来,使我们能直接输入文本并获取对应需求的答案。将文本传递到管道时主要涉及三个步骤:

  1. 人类可理解的文本被预处理为模型可理解的数据格式;
  2. 将可理解的数据传递给模型,模型做出预测;
  3. 模型的预测再经过后处理,输出人类可理解的文本。

情感分析

python 复制代码
from transformers import pipeline

classifier = pipeline("sentiment-analysis")
classifier("I've been waiting for a HuggingFace course my whole life.")
# # [{'label': 'POSITIVE', 'score': 0.9598047137260437}]

classifier(["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"])

##  [{'label': 'POSITIVE', 'score': 0.9598047137260437},
##   {'label': 'NEGATIVE', 'score': 0.9994558095932007}]

零样本分类

python 复制代码
from transformers import pipeline

classifier = pipeline("zero-shot-classification")
classifier("This is a course about the Transformers library",
    candidate_labels=["education", "politics", "business"])

2.1、

2.1、

相关推荐
Mintopia14 分钟前
🌐 动态网络环境中 WebAIGC 的断点续传与容错技术
人工智能·aigc·trae
飞哥数智坊1 小时前
两天一首歌,这个UP主是怎么做到的?
人工智能·aigc
fanstuck7 小时前
深入解析 PyPTO Operator:以 DeepSeek‑V3.2‑Exp 模型为例的实战指南
人工智能·语言模型·aigc·gpu算力
墨风如雪12 小时前
深夜炸场!Claude Opus 4.5发布,程序员的饭碗这次真悬了?
aigc
win4r13 小时前
昨夜炸场!Claude Opus 4.5 发布,Chrome 插件“夺舍”浏览器,实测这7大功能令人头皮发麻
aigc·openai·claude
爱吃的小肥羊17 小时前
GPT-5.1-Codex-Max正式发布,超越Gemini 3,编程能力第一!(附使用方法)
后端·aigc·openai
洗澡水加冰17 小时前
MCP与Skills的辨析
后端·aigc·mcp
恋猫de小郭1 天前
谷歌新论文:为什么当前 AI 无法在训练后继续学习?
前端·人工智能·aigc
302AI1 天前
大白话聊一聊 | AIGC万字指南(上):从A到Z,打破技术词汇认知壁垒
aigc
盼小辉丶1 天前
Transformer实战(27)——参数高效微调(Parameter Efficient Fine-Tuning,PEFT)
深度学习·transformer·模型微调