开源数据收集引擎 Logstash 讲解和示例讲解

一、概述

Logstash 是一个开源的数据收集和日志处理工具,它是 Elastic Stack(ELK Stack)的一部分,用于从各种数据源中采集、转换和传输数据,以帮助分析和可视化大规模数据。Logstash 通常与 ElasticsearchKibana 一起使用,以实现实时日志分析和监控。

以下是 Logstash 的主要功能和特点:

  • 数据采集Logstash 可以从多种数据源中采集数据,包括日志文件、数据文件、消息队列、数据库、网络流量等。它支持多种输入插件,以适应不同数据源的需要。

  • 数据转换Logstash 具有强大的数据转换功能,可以对采集的数据进行过滤、解析、转换和丰富操作。它使用过滤插件来对数据执行各种操作,包括正则表达式解析、字段拆分、数据脱敏、时间戳生成等。

  • 多通道数据处理Logstash 允许将数据流式传输到不同的通道,以满足不同的需求。通道可以是 Elasticsearch、Kafka、RabbitMQ 等,或者您可以定义自定义输出插件。

  • 数据过滤和插件Logstash 有丰富的插件生态系统,包括输入插件、过滤插件和输出插件。这些插件可以根据特定需求来配置和扩展,以适应各种数据处理任务。

  • 实时数据处理Logstash 具有实时数据处理能力,可以将数据从源头到目的地以实时或近实时的方式传递。这使得它适用于日志监控、安全分析、性能监控等实时应用。

  • 可伸缩性Logstash 可以与多个 Logstash 实例一起部署,以实现数据采集和处理的横向扩展。这有助于应对大规模数据需求。

  • 易于配置Logstash 使用简单的配置文件(通常是YAML格式)来定义数据流的处理过程。配置文件非常直观,易于理解和维护。

  • 社区和支持Logstash 是一个广泛采用的开源项目,拥有活跃的社区支持和大量的文档资源。

LogstashElastic Stack 中的一个重要组件,与 ElasticsearchKibana 配合使用,可以构建强大的实时日志和数据分析解决方案。它为组织提供了强大的数据采集和处理工具,用于监控、分析和可视化大规模数据。

官方文档:

二、Logstash 架构

Logstash 包含3个主要部分: 输入(inputs)过滤器(filters)输出(outputs)

Logstash的事件(logstash将数据流中等每一条数据称之为一个event)处理流水线有三个主要角色完成:inputs --> filters --> outputs

  • inpust:必须,负责产生事件(Inputs generate events),常用:File、syslog、redis、kakfa、beats(如:Filebeats);官方文档:www.elastic.co/guide/en/lo...
  • filters:可选,负责数据处理与转换(filters modify them),常用:grok、mutate、drop、clone、geoip;官网文档:www.elastic.co/guide/en/lo...
  • outpus:必须,负责数据输出(outputs ship them elsewhere),常用:elasticsearch、file、graphite、kakfa、statsd;官方文档:www.elastic.co/guide/en/lo...

二、ElasticSearch 部署

这里可以选择以下部署方式:

这里我选择 docker-compose 部署方式。

1)部署 docker

bash 复制代码
# 安装yum-config-manager配置工具
yum -y install yum-utils

# 建议使用阿里云yum源:(推荐)
#yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

# 安装docker-ce版本
yum install -y docker-ce
# 启动并开机启动
systemctl enable --now docker
docker --version

2)部署 docker-compose

bash 复制代码
curl -SL https://github.com/docker/compose/releases/download/v2.16.0/docker-compose-linux-x86_64 -o /usr/local/bin/docker-compose

chmod +x /usr/local/bin/docker-compose
docker-compose --version

3)创建网络

bash 复制代码
# 创建
docker network create bigdata

# 查看
docker network ls

4)修改 Linux 句柄数和最大线程数

bash 复制代码
#查看当前最大句柄数
sysctl -a | grep vm.max_map_count
#修改句柄数
vi /etc/sysctl.conf
vm.max_map_count=262144

#临时生效,修改后需要重启才能生效,不想重启可以设置临时生效
sysctl -w vm.max_map_count=262144

#修改后需要重新登录生效
vi /etc/security/limits.conf

# 添加以下内容
* soft nofile 65535
* hard nofile 65535
* soft nproc 4096
* hard nproc 4096

# 重启服务,-h 立刻重启,默认间隔一段时间才会开始重启
reboot -h now

5)下载部署包开始部署

bash 复制代码
# 这里选择 docker-compose 部署方式
git clone https://gitee.com/hadoop-bigdata/docker-compose-es-kibana.git

cd docker-compose-es-kibana

chmod -R 777 es kibana

docker-compose -f docker-compose.yaml up -d

docker-compose ps

三、Logstash 部署与配置讲解

1)下载Logstash安装包

访问官方网站 www.elastic.co/downloads/l... ,下载相应版本的zip文件。

bash 复制代码
wget https://artifacts.elastic.co/downloads/logstash/logstash-8.11.1-linux-x86_64.tar.gz

2)解压安装包文件

bash 复制代码
tar -xf logstash-8.11.1-linux-x86_64.tar.gz

3)不同场景测试

1)测试1:采用标准的输入和输出

bash 复制代码
cd logstash-8.11.1
# 测试,采用标准的输入和输出,#codec=>rubydebug,解析转换类型:ruby
# codec各类型讲解:https://www.elastic.co/guide/en/logstash/7.9/codec-plugins.html
./bin/logstash -e 'input{stdin{}} output{stdout{codec=>rubydebug}}'

# 输入:
hello
# 输出:
{
         "event" => {
        "original" => "hello"
    },
          "host" => {
        "hostname" => "local-168-182-110"
    },
      "@version" => "1",
    "@timestamp" => 2023-11-19T02:31:02.485073839Z,
       "message" => "hello"
}

2)测试2:使用配置文件 +标准输入输出

配置文件:config/logstash-1.conf

bash 复制代码
input { 
	stdin { }
}
 
output {
   stdout { codec => rubydebug }
}

启动服务

bash 复制代码
./bin/logstash -f ./config/logstash-1.conf

3)测试3:配置文件+file输入 +标准的屏幕输出

配置文件:./config/logstash-2.conf

bash 复制代码
input {
  file {
    path => "/var/log/messages"
  }
}
output {
  stdout {
    codec=>rubydebug
  }
}

启动服务

bash 复制代码
./bin/logstash -f ./config/logstash-2.conf

4)测试4:配置文件+文件输入+kafka输出

kafka 部署,可以参考我以下几篇文章:

配置文件:./config/logstash-3.conf

bash 复制代码
input {
  file {
    path => "/var/log/messages"
 
  }
}
output {
  kafka {
    bootstrap_servers => "192.168.182.110:9092"
    topic_id => "messages"
  }
}

启动服务

bash 复制代码
./bin/logstash -f ./config/logstash-3.conf

消费 kafka 数据

bash 复制代码
docker exec -it kafka-node1 bash

./bin/kafka-console-consumer.sh  --bootstrap-server localhost:9092 --topic messages  --from-beginning

5)测试5:配置文件+filebeat端口输入+标准输出

filebeat 部署,可以参考我以下几篇文章:

服务器产生日志(filebeat)---》logstash服务器

配置文件:./config/logstash-4.conf

bash 复制代码
input {
  beats {
    port => 5044
 
  }
}
output {
  stdout {
    codec => rubydebug
  }
}

启动服务

bash 复制代码
./bin/logstash -f ./config/logstash-4.conf

启动后会在本机启动一个5044端口,不要和系统已启动的端口冲突即可,配合测试我们在 filebeat 服务器上修改配置文件。

filebeat 配置文件内容:filebeat.yml

bash 复制代码
filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /var/log/messages
# ------------------------------ Logstash Output -------------------------------
output.logstash:
  hosts: ["192.168.182.110:5044"]      

启动 filebeat

bash 复制代码
./filebeat -e -c filebeat.yml

6)测试6:配置文件+filebeat端口输入+输出到kafka

服务器产生日志(filebeat)---> logstash服务器---->kafka服务器

配置文件:./config/logstash-5.conf

bash 复制代码
input {
  beats {
    port => 5044
 
  }
}
output {
  kafka {
  bootstrap_servers => "192.168.182.110:9092"
  topic_id => "messages"
 
  }
}

启动服务

bash 复制代码
./bin/logstash -f ./config/logstash-5.conf

7)测试7:filebeat数据采集+kafka读取当输入+logstash处理+输出到 ES

服务器产生日志(filebeat)---> kafka服务器__抽取数据___> logstash服务器---->ES logstash的配置:./config/logstash-6.conf

bash 复制代码
input {
    kafka {
    bootstrap_servers => "10.82.192.110:9092"
    topics => ["messages"]
    }
}
output {
    elasticsearch {
    hosts => ["10.82.192.110:9200"]
    index => "messageslog-%{+YYYY-MM-dd}"
  }
}

filebeat.yml output.kafka 配置:

bash 复制代码
# ------------------------------ KAFKA Output -------------------------------
output.kafka:
  eanbled: true
  hosts: ["10.82.192.110:9092"]
  version: "2.0.1"
  topic: '%{[fields][log_topic]}'
  partition.round_robin:
    reachable_only: true
  worker: 2
  required_acks: 1
  compression: gzip
  max_message_bytes: 10000000

使用 systemctl 启动 filebeat

bash 复制代码
# vi /usr/lib/systemd/system/filebeat.service

[Unit]
Description=filebeat server daemon
Documentation=/opt/filebeat-7.6.2-linux-x86_64/filebeat -help
Wants=network-online.target
After=network-online.target
 
[Service]
User=root
Group=root
Environment="BEAT_CONFIG_OPTS=-c /opt/filebeat-7.6.2-linux-x86_64/filebeat.yml"
ExecStart=/opt/filebeat-7.6.2-linux-x86_64/filebeat $BEAT_CONFIG_OPTS
Restart=always
 
[Install]
WantedBy=multi-user.target

使用 systemctl 启动 logstash

bash 复制代码
# vi /usr/lib/systemd/system/logstash.service

[Unit]
Description=logstash

[Service]
User=root
ExecStart=/opt/logstash-8.11.1/bin/logstash -f /opt/logstash-8.11.1/config/logstash-6.conf
Restart=always

[Install]
WantedBy=multi-user.target

启动服务

bash 复制代码
systemctl start logstash
systemctl status logstash

四、Logstash filter常用插件

负责数据处理与转换(filters modify them),常用:grok、mutate、drop、clone、geoip;官网文档:www.elastic.co/guide/en/lo...

1)使用grok内置的正则案例

grok 插件:Grok是将非结构化日志数据解析为结构化和可查询内容的好方法,底层原理是基于正则匹配任意文本格式

此工具非常适合syslog日志、apache和其他Web服务器日志、mysql日志,以及一般来说,任何通常为人类而不是计算机消费编写的日志格式。

grok内置了120种匹配模式,也可以自定义匹配模式:github.com/logstash-pl...

filebeat配置:filebeat.yml

bash 复制代码
##
filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /var/log/messages

output.logstash:
  #指定logstash监听的IP和端口
  hosts: ["192.168.182.110:5044"]

logstash 配置:stdin-grok-stout.conf

bash 复制代码
cat >> stdin-grok-stout.conf << EOF
input {
  #监听的类型
  beats {
  #监听的本地端口
    port => 5044
  }
}

filter{
  grok{ 
   #match => { "message" => "%{COMBINEDAPACHELOG}" } 
   #上面的"COMBINEDAPACHELOG"变量官方github上已经废弃,建议使用下面的匹配模式 
   #参考地址:https://github.com/logstash-plugins/logstash-patterns-core/blob/main/patterns/legacy/httpd
   match => { "message" => "%{HTTPD_COMBINEDLOG}" }
  }

}

output {
  stdout {}

  elasticsearch {
    #定义es集群的主机地址
    hosts => ["192.168.182.110:9200"]
    #定义索引名称
    index => "hqt-application-pro-%{+YYYY.MM.dd}"
  }
}
EOF

2)使用grok自定义的正则案例

参考官网地址:www.elastic.co/guide/en/lo...

配置如下:

bash 复制代码
cat >> stdin-grok_custom_patterns-stdout.conf << EOF
input {
 stdin {}
}

filter {
  grok {
    #指定模式匹配的目录,可以使用绝对路径
    #在./patterns目录下随便创建一文件,并写入以下匹配模式
    # ORDER_ID [\u4e00-\u9fa5]{10,11}:[0-9A-F]{10,11}
    patterns_dir => ["./patterns"]
    #匹配模式
    #测试数据为:app_name:gotone-payment-api,client_ip:,context:,docker_name:,env:dev,exception:,extend1:,level:INFO,line:-1,log_message:com.gotone.paycenter.controller.task.PayCenterJobHandler.queryPayOrderTask-request:[\\],log_time:2022-11-23 00:00:00.045,log_type:applicationlog,log_version:1.0.0,本次成交的订单编号为:BEF25A72965,parent_span_id:,product_line:,server_ip:,server_name:gotone-payment-api-c86658cb7-tc8k5,snooper:,span:0,span_id:,stack_message:,threadId:104,trace_id:,user_log_type:
    match => { "message" => "%{ORDER_ID:test_order_id}" }
  }
}

output {
  stdout {}
}
EOF

3)filter插件通用字段案例(添加/删除字段、tag)

原有字段(nginx的json解析日志)

配置如下:

bash 复制代码
cat >> stdin-remove_add_field-stout.conf << EOF
input {
  beats {
    port => 5044
  }
}

filter {
  mutate {
    #移除指定的字段,使用逗号分隔
    remove_field => [ "tags","agent","input","log","ecs","version","@version","ident","referrer","auth" ]


    #添加指定的字段,使用逗号分隔
    #"%{clientip}"使用%可以将已有字段的值当作变量使用
    add_field => {
     "app_name" => "nginx"
     "test_clientip" => "clientip---->%{clientip}"
    }


    #添加tag
    add_tag => [ "linux","web","nginx","test" ]


    #移除tag
    remove_tag => [ "linux","test" ]

  }
}

output {
  stdout {}
}
EOF

4)date 插件修改写入ES的时间案例

测试日志:如下是我们要收集的一条json格式的日志

bash 复制代码
{"app_name":"gotone-payment-api","client_ip":"","context":"","docker_name":"","env":"dev","exception":"","extend1":"","level":"INFO","line":68,"log_message":"现代金控支付查询->调用入参[{}]","log_time":"2022-11-23 00:00:00.051","log_type":"applicationlog","log_version":"1.0.0","method_name":"com.gotone.paycenter.dao.third.impl.modernpay.ModernPayApiAbstract.getModernPayOrderInfo","parent_span_id":"","product_line":"","server_ip":"","server_name":"gotone-payment-api-c86658cb7-tc8k5","snooper":"","span":0,"span_id":"","stack_message":"","threadId":104,"trace_id":"gotone-payment-apib4a65777-ce6b-4bcc-8aef-71a7cfffaf2c","user_log_type":""}

配置如下:

bash 复制代码
cat >> stdin-date-es.conf << EOF
input {
  file {
    #指定收集的路径
    path => "/var/log/messages"
  }
}


filter {

  json {
  #JSON解析器 可以将json形式的数据转换为logstash实际的数据结构(根据key:value拆分成字段形式)
    source => "message"
  }


  date {
    #匹配时间字段并解析
    match => [ "log_time", "yyyy-MM-dd HH:mm:ss.SSS" ]
    #将匹配到的时间字段解析后存储到目标字段,默认字段为"@timestamp"
    target => "@timestamp"
    timezone => "Asia/Shanghai"
  }

}

output {
  stdout {}

  elasticsearch {
    #定义es集群的主机地址
    hosts => ["192.168.182.110:9200"]
    #定义索引名称
    index => "hqt-application-pro-%{+YYYY.MM.dd}"
  }
}
EOF

5)geoip分析原IP地址位置案例

测试数据为:nginx的json格式日志

bash 复制代码
{"@timestamp":"2022-12-18T03:27:10+08:00","host":"10.0.24.2","clientip":"114.251.122.178","SendBytes":4833,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"43.143.242.47","uri":"/index.html","domain":"43.143.242.47","xff":"-","referer":"-","tcp_xff":"-","http_user_agent":"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36","status":"200"}

配置如下:

bash 复制代码
cat >> beats-geoip-stdout.conf << EOF
input {
  file {
    #指定收集的路径
    path => "/var/log/test.log"
  }
}

filter {
  json {
  #JSON解析器 可以将json形式的数据转换为logstash实际的数据结构(根据key:value拆分成字段形式)
    source => "message"
  }

  geoip {
    #指定基于哪个字段分析IP地址
    source => "client_ip"
    #指定IP地址分析模块所使用的数据库,默认为GeoLite2-City.mmdb(这里必须再次指定以下,否则不会显示城市)
    database => "/hqtbj/hqtwww/logstash_workspace/data/plugins/filters/geoip/CC/GeoLite2-City.mmdb"
    #如果期望查看指定的字段,则可以在这里配置,若不配置,表示显示所有的查询字段
    #fields => ["city_name","country_name","ip"]
    #指定geoip的输出字段,当有多个IP地址需要分析时(例如源IP和目的IP),则该字段非常有效
    #target => "test-geoip-nginx"
  }

}

output {
  stdout {}
}
EOF

GeoLite2-City.mmdb 下载:dev.maxmind.com/geoip/geoli...

7)mutate组件常用案例

mutate 测试数据 python 脚本:

bash 复制代码
cat >> generate_log.py << EOF
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# @author : oldboyedu-linux80
import datetime
import random
import logging
import time
import sys
LOG_FORMAT = "%(levelname)s %(asctime)s [com.oldboyedu.%(module)s] - %(message)s "
DATE_FORMAT = "%Y-%m-%d %H:%M:%S"
# 配置root的logging.Logger实例的基本配置
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT, datefmt=DATE_FORMAT, filename=sys.argv[1], filemode='a',)
actions = ["浏览⻚⾯", "评论商品", "加⼊收藏", "加⼊购物⻋", "提交订单", "使⽤优惠券", "领取优惠券", "搜索", "查看订单", "付款", "清空购物⻋"]
while True: 
    time.sleep(random.randint(1, 5))
    user_id = random.randint(1, 10000)
# 对⽣成的浮点数保留2位有效数字.
    price = round(random.uniform(15000, 30000),2)
    action = random.choice(actions)
    svip = random.choice([0,1])
    logging.info("DAU|{0}|{1}|{2}|{3}".format(user_id, action,svip,price))
EOF


# python generate_log.py  /tmp/app.log

8)logstash的多if分支案例

配置如下:

bash 复制代码
cat >> homework-to-es.conf << EOF
input {
  beats {
    type => "test-nginx-applogs"
    port => 5044
  } 
  file {
    type => "test-product-applogs"
    path => "/tmp/app.logs"
  }
  beats {
    type => "test-dw-applogs"
    port => 8888
  }
  file { 
    type => "test-payment-applogs"
    path => "/tmp/payment.log"
  } 
}


filter {
  if [type] == "test-nginx-applogs"{
    mutate {
      remove_field => [ "tags","agent","input","log","ecs","version","@version","ident","referrer","auth","xff","referer","upstreamtime","upstreamhost","tcp_xff"]
    }
    geoip {
     source => "clientip"
     database => "/hqtbj/hqtwww/logstash_workspace/data/plugins/filters/geoip/CC/GeoLite2-City.mmdb"
    }
    useragent {
     source => "http_user_agent"
    }
  } 

  if [type] == "test-product-applogs" {
    mutate {
     split => { "message" => "|" }
    }
    mutate {
      add_field => {
        "user_id" => "%{[message][1]}"
        "action" => "%{[message][2]}"
        "svip" => "%{[message][3]}"
        "price" => "%{[message][4]}"
      }
    }
    mutate {
      convert => {
      "user_id" => "integer"
      "svip" => "boolean"
      "price" => "float"
      }
    }
  } 

  if [type] in [ "test-dw-applogs","test-payment-applogs" ] {
    json {
      source => "message"
    }
    date {
      match => [ "log_time", "yyyy-MM-dd HH:mm:ss.SSS" ]
      target => "@timestamp"
    }
  }
}


output {
  stdout {}
  if [type] == "test-nginx-applogs" { 
    elasticsearch {
      hosts => ["192.168.182.110:9200"]
      index => "test-nginx-logs-%{+YYYY.MM.dd}" 
    }
  }

  if [type] == "test-product-applogs" {
    elasticsearch {
      hosts => ["192.168.182.110:9200"]
      index => "test-product-applogs-%{+YYYY.MM.dd}"    
    }
  }

  if [type] in [ "test-dw-applogs","test-payment-applogs" ] {
    elasticsearch {
      hosts => ["192.168.182.110:9200"]
      index => "test-center-applogs-%{+YYYY.MM.dd}"
    }
  }
}
EOF

开源数据收集引擎 Logstash 讲解和示例讲解就先到这里了,有任何疑问也可关注我公众号:大数据与云原生技术分享,进行技术交流,如本篇文章对您有所帮助,麻烦帮忙一键三连(点赞、转发、收藏)~

相关推荐
小诺大人19 小时前
【超详细】ELK实现日志采集(日志文件、springboot服务项目)进行实时日志采集上报
spring boot·后端·elk·logstash
zfj32111 天前
学英语学Elasticsearch:04 Elastic integrations 工具箱实现对第三方数据源的采集、存储、可视化,开箱即用
大数据·elasticsearch·搜索引擎·logstash·elastic agent·与第三方集成
zfj32112 天前
学技术学英语:ELK是什么
elk·elasticsearch·kibana·logstash·elk stack
松岛的枫叶12 天前
springBoot整合ELK Windowsb版本 (elasticsearch+logstash+kibana)
spring boot·elk·elasticsearch·kibana·logstash
运维&陈同学14 天前
【Logstash02】企业级日志分析系统ELK之Logstash 输入 Input 插件
linux·运维·elk·elasticsearch·云原生·自动化·logstash
运维&陈同学15 天前
【Logstash03】企业级日志分析系统ELK之Logstash 过滤 Filter 插件
大数据·运维·elk·elasticsearch·微服务·云原生·logstash
运维&陈同学16 天前
【Logstash01】企业级日志分析系统ELK之Logstash 安装与介绍
大数据·linux·elk·elasticsearch·云原生·自动化·logstash
青青草原一只狼1 个月前
使用ElasticSearch实现全文检索
大数据·elasticsearch·全文检索·logstash
根哥的博客2 个月前
logstash 解析数组格式json数据:split, json
logstash
Zz罗伯特2 个月前
Logstash传送数据至ES报错403
elasticsearch·logstash