onnx模型转换opset版本和固定动态输入尺寸

背景:之前我想把onnx模型从opset12变成opset12,太慌乱就没找着,最近找到了官网上有示例的,大爱onnx官网,分享给有需求没找着的小伙伴们。

1. onnx模型转换opset版本

官网示例:

python 复制代码
import onnx
from onnx import version_converter, helper

# Preprocessing: load the model to be converted.
model_path = "path/to/the/model.onnx"
original_model = onnx.load(model_path)

print(f"The model before conversion:\n{original_model}")

# A full list of supported adapters can be found here:
# https://github.com/onnx/onnx/blob/main/onnx/version_converter.py#L21
# Apply the version conversion on the original model
converted_model = version_converter.convert_version(original_model, <int target_version>)

print(f"The model after conversion:\n{converted_model}")

其github地址如下:

onnx/docs/PythonAPIOverview.md at main · onnx/onnx (github.com)https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md#converting-version-of-an-onnx-model-within-default-domain-aionnx其小伙伴拉到gitee上的地址如下(以防有的小伙伴github打不开):

docs/PythonAPIOverview.md · meiqicheng/github-onnx-onnx - Gitee.comhttps://gitee.com/meiqicheng1216/onnx/blob/master/docs/PythonAPIOverview.md#converting-version-of-an-onnx-model-within-default-domain-aionnx最后附上完整代码:

python 复制代码
import onnx
from onnx import version_converter, helper

# A full list of supported adapters can be found here:
# https://github.com/onnx/onnx/blob/main/onnx/version_converter.py#L21
# Apply the version conversion on the original model

# Preprocessing: load the model to be converted.
model_path = r"./demo.onnx"
original_model = onnx.load(model_path)
print(f"The model before conversion:\n{original_model}")


converted_model = version_converter.convert_version(original_model, 11)
print(f"The model after conversion:\n{converted_model}")

save_model = model_path[:-5] + "_opset11.onnx"
onnx.save(converted_model, save_model)

2. onnx模型转固定动态输入尺寸

python 复制代码
def change_dynamic_input_shape(model_path, shape_list: list):
    """
    将动态输入的尺寸变成固定尺寸
    Args:
        model_path: onnx model path
        shape_list: [1, 3, ...]
    Returns:

    """
    import os
    import onnx
    model_path = os.path.abspath(model_path)
    output_path = model_path[:-5] + "_fixed.onnx"
    model = onnx.load(model_path)
    # print(onnx.helper.printable_graph(model.graph))
    inputs = model.graph.input  # inputs是一个列表,可以操作多输入~
    # look_input = inputs[0].type.tensor_type.shape.dim
    # print(look_input)
    # print(type(look_input))
    # inputs[0].type.tensor_type.shape.dim[0].dim_value = 1
    for idx, i_e in enumerate(shape_list):
        inputs[0].type.tensor_type.shape.dim[idx].dim_value = i_e
    # print(onnx.helper.printable_graph(model.graph))
    onnx.save(model, output_path)


if __name__ == "__main__":
    model_path = "./demo.onnx"
    shape_list = [1]
    change_dynamic_input_shape(model_path, shape_list)
相关推荐
Lun3866buzha16 小时前
自动扶梯与楼梯识别_yolo11-C3k2-SCcConv改进实现
python
JavaLearnerZGQ16 小时前
1、Java中的线程
java·开发语言·python
@zulnger16 小时前
python 学习笔记(多线程和多进程)
笔记·python·学习
Master_清欢16 小时前
jupyter新增行数
ide·python·jupyter
羸弱的穷酸书生17 小时前
python中各种数据类型的转换方法
python
D___H17 小时前
Part8_编写自己的解释器
python
TDengine (老段)17 小时前
TDengine Python 连接器入门指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
田里的水稻17 小时前
C++_python_相互之间的包含调用方法
c++·chrome·python
2501_9418705618 小时前
面向微服务熔断与流量削峰策略的互联网系统稳定性设计与多语言工程实践分享
开发语言·python
GIS之路18 小时前
GDAL 实现矢量裁剪
前端·python·信息可视化