激发创新,助力研究:CogVLM,强大且开源的视觉语言模型亮相

激发创新,助力研究:CogVLM,强大且开源的视觉语言模型亮相

  • CogVLM 是一个强大的开源视觉语言模型(VLM)。CogVLM-17B 拥有 100 亿视觉参数和 70 亿语言参数。

  • CogVLM-17B 在 10 个经典跨模态基准测试上取得了 SOTA 性能,包括 NoCaps、Flicker30k captioning、RefCOCO、RefCOCO+、RefCOCOg、Visual7W、GQA、ScienceQA、VizWiz VQA 和 TDIUC,而在 VQAv2、OKVQA、TextVQA、COCO captioning 等方面则排名第二,超越或与 PaLI-X 55B 持平。您可以通过线上 demo 体验 CogVLM 多模态对话。

1.demo案例展示

  • CogVLM 能够准确地描述图像,几乎不会出现幻觉。 LLAVA-1.5 和 MiniGPT-4 的比较。
  • CogVLM 能理解和回答各种类型的问题,并有一个视觉定位 版本。

  • CogVLM 有时比 GPT-4V(ision) 提取到更多的细节信息。

2.快速使用

CogVLM 模型包括四个基本组件:视觉变换器(ViT)编码器、MLP适配器、预训练的大型语言模型(GPT)和一个视觉专家模块 。更多细节请参见论文

2.1入门指南

我们提供两种图形用户界面(GUI)进行模型推断,分别是网页演示命令行界面(CLI)。如果您想在Python代码中使用它,很容易修改CLI脚本以适应您的情况。

首先,需要安装依赖项。

bash 复制代码
pip install -r requirements.txt
python -m spacy download en_core_web_sm
  • 硬件要求
    • 模型推断:1 * A100(80G) 或 2 * RTX 3090(24G)。
    • 微调:4 * A100(80G) [推荐] 或 8 * RTX 3090(24G)。

2.2 网页演示

我们还提供基于Gradio的本地网页演示。首先,通过运行 pip install gradio 安装Gradio。然后下载并进入此仓库,运行 web_demo.py。具体使用方式如下:

bash 复制代码
python web_demo.py --from_pretrained cogvlm-chat --version chat --english --bf16
python web_demo.py --from_pretrained cogvlm-grounding-generalist --version base --english --bf16

网页演示的 GUI 界面如下:

2.3 CLI

我们开源了不同下游任务的模型权重:

  • cogvlm-chat 用于对齐的模型,在此之后支持像 GPT-4V 一样的聊天。
  • cogvlm-base-224 文本-图像预训练后的原始权重。
  • cogvlm-base-490 从 cogvlm-base-224 微调得到的 490px 分辨率版本。
  • cogvlm-grounding-generalist 这个权重支持不同的视觉定位任务,例如 REC、Grounding Captioning 等。

通过CLI演示,执行以下命令:

bash 复制代码
python cli_demo.py --from_pretrained cogvlm-base-224 --version base --english --bf16 --no_prompt
python cli_demo.py --from_pretrained cogvlm-base-490 --version base --english --bf16 --no_prompt
python cli_demo.py --from_pretrained cogvlm-chat --version chat --english --bf16
python cli_demo.py --from_pretrained cogvlm-grounding-generalist --version base --english --bf16

该程序会自动下载 sat 模型并在命令行中进行交互。您可以通过输入指令并按 Enter 生成回复。 输入 clear 可清除对话历史,输入 stop 可停止程序。

  • 参考链接

github.com/THUDM/CogVL...

在 CogVLM 的指令微调阶段,使用了来自 MiniGPT-4LLAVALRV-InstructionLLaVARShikra 项目的一些英文图像-文本数据,

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关推荐
编码小哥3 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念4 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路4 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen5 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗5 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型5 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd6 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白6 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_807 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20207 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能