UE5 中的computer shader使用

转载:UE5 中的computer shader使用 - 知乎 (zhihu.com)

目标

  1. 通过蓝图输入参数,经过Compture Shader做矩阵运算

流程

  1. 新建插件
  2. 插件设置
  3. 声明和GPU内存对齐的参数结构
  4. 声明Compture Shader结构
  5. 参数绑定
  6. 着色器实现
  7. 分配 work groups
  8. 计算和输出
  9. 额外添加参数

1. 新建插件

新建空白插件即可,正常插件创建流程,看官方文档,


2. 插件设置

XXX.Build.cs

复制代码
		PrivateDependencyModuleNames.AddRange(
			new string[]
			{
				"CoreUObject",
				"Engine",
				"Renderer",
				"RenderCore",
				"RHI",
				"Projects"
				// ... add private dependencies that you statically link with here ...	
			}
			);

XXX.uplugin

复制代码
"Modules": [
		{
			"Name": "CS_Test",
			"Type": "Runtime",
			"LoadingPhase": "PostConfigInit"
		}
	]

3. 声明和GPU内存对齐的参数结构

复制代码
struct CS_TEST_API FMySimpleComputeShaderDispatchParams
{
	int X;
	int Y;
	int Z;

	
	int Input[2];
	int Output;
	
	

	FMySimpleComputeShaderDispatchParams(int x, int y, int z)
		: X(x)
		, Y(y)
		, Z(z)
	{
	}
};

4. 声明Compture Shader结构和参数绑定

MySimpleComputeShader.cpp

复制代码
#include "MySimpleComputeShader.h"
#include "../../../Shaders/Public/MySimpleComputeShader.h"
#include "PixelShaderUtils.h"
#include "RenderCore/Public/RenderGraphUtils.h"
#include "MeshPassProcessor.inl"
#include "StaticMeshResources.h"
#include "DynamicMeshBuilder.h"
#include "RenderGraphResources.h"
#include "GlobalShader.h"
#include "UnifiedBuffer.h"
#include "CanvasTypes.h"
#include "MaterialShader.h"

DECLARE_STATS_GROUP(TEXT("MySimpleComputeShader"), STATGROUP_MySimpleComputeShader, STATCAT_Advanced);
DECLARE_CYCLE_STAT(TEXT("MySimpleComputeShader Execute"), STAT_MySimpleComputeShader_Execute, STATGROUP_MySimpleComputeShader);

// This class carries our parameter declarations and acts as the bridge between cpp and HLSL.
class CS_TEST_API FMySimpleComputeShader : public FGlobalShader
{
public:
	
	DECLARE_GLOBAL_SHADER(FMySimpleComputeShader);
	SHADER_USE_PARAMETER_STRUCT(FMySimpleComputeShader, FGlobalShader);
	
	
	class FMySimpleComputeShader_Perm_TEST : SHADER_PERMUTATION_INT("TEST", 1);
	using FPermutationDomain = TShaderPermutationDomain<
		FMySimpleComputeShader_Perm_TEST
	>;

	BEGIN_SHADER_PARAMETER_STRUCT(FParameters, )
		/*
		* Here's where you define one or more of the input parameters for your shader.
		* Some examples:
		*/
		// SHADER_PARAMETER(uint32, MyUint32) // On the shader side: uint32 MyUint32;
		// SHADER_PARAMETER(FVector3f, MyVector) // On the shader side: float3 MyVector;

		// SHADER_PARAMETER_TEXTURE(Texture2D, MyTexture) // On the shader side: Texture2D<float4> MyTexture; (float4 should be whatever you expect each pixel in the texture to be, in this case float4(R,G,B,A) for 4 channels)
		// SHADER_PARAMETER_SAMPLER(SamplerState, MyTextureSampler) // On the shader side: SamplerState MySampler; // CPP side: TStaticSamplerState<ESamplerFilter::SF_Bilinear>::GetRHI();

		// SHADER_PARAMETER_ARRAY(float, MyFloatArray, [3]) // On the shader side: float MyFloatArray[3];

		// SHADER_PARAMETER_UAV(RWTexture2D<FVector4f>, MyTextureUAV) // On the shader side: RWTexture2D<float4> MyTextureUAV;
		// SHADER_PARAMETER_UAV(RWStructuredBuffer<FMyCustomStruct>, MyCustomStructs) // On the shader side: RWStructuredBuffer<FMyCustomStruct> MyCustomStructs;
		// SHADER_PARAMETER_UAV(RWBuffer<FMyCustomStruct>, MyCustomStructs) // On the shader side: RWBuffer<FMyCustomStruct> MyCustomStructs;

		// SHADER_PARAMETER_SRV(StructuredBuffer<FMyCustomStruct>, MyCustomStructs) // On the shader side: StructuredBuffer<FMyCustomStruct> MyCustomStructs;
		// SHADER_PARAMETER_SRV(Buffer<FMyCustomStruct>, MyCustomStructs) // On the shader side: Buffer<FMyCustomStruct> MyCustomStructs;
		// SHADER_PARAMETER_SRV(Texture2D<FVector4f>, MyReadOnlyTexture) // On the shader side: Texture2D<float4> MyReadOnlyTexture;

		// SHADER_PARAMETER_STRUCT_REF(FMyCustomStruct, MyCustomStruct)

		
		SHADER_PARAMETER_RDG_BUFFER_SRV(Buffer<int>, Input)
		SHADER_PARAMETER_RDG_BUFFER_UAV(RWBuffer<int>, Output)
		

	END_SHADER_PARAMETER_STRUCT()

public:
	static bool ShouldCompilePermutation(const FGlobalShaderPermutationParameters& Parameters)
	{
		const FPermutationDomain PermutationVector(Parameters.PermutationId);
		
		return true;
	}

	static void ModifyCompilationEnvironment(const FGlobalShaderPermutationParameters& Parameters, FShaderCompilerEnvironment& OutEnvironment)
	{
		FGlobalShader::ModifyCompilationEnvironment(Parameters, OutEnvironment);

		const FPermutationDomain PermutationVector(Parameters.PermutationId);

		/*
		* Here you define constants that can be used statically in the shader code.
		* Example:
		*/
		// OutEnvironment.SetDefine(TEXT("MY_CUSTOM_CONST"), TEXT("1"));

		/*
		* These defines are used in the thread count section of our shader
		*/
		OutEnvironment.SetDefine(TEXT("THREADS_X"), NUM_THREADS_MySimpleComputeShader_X);
		OutEnvironment.SetDefine(TEXT("THREADS_Y"), NUM_THREADS_MySimpleComputeShader_Y);
		OutEnvironment.SetDefine(TEXT("THREADS_Z"), NUM_THREADS_MySimpleComputeShader_Z);

		// This shader must support typed UAV load and we are testing if it is supported at runtime using RHIIsTypedUAVLoadSupported
		//OutEnvironment.CompilerFlags.Add(CFLAG_AllowTypedUAVLoads);

		// FForwardLightingParameters::ModifyCompilationEnvironment(Parameters.Platform, OutEnvironment);
	}
private:
};

// This will tell the engine to create the shader and where the shader entry point is.
//                            ShaderType                            ShaderPath                     Shader function name    Type
IMPLEMENT_GLOBAL_SHADER(FMySimpleComputeShader, "/Plugin/CS_Test/Private/MySimpleComputeShader.usf", "MySimpleComputeShader", SF_Compute);

void FMySimpleComputeShaderInterface::DispatchRenderThread(FRHICommandListImmediate& RHICmdList, FMySimpleComputeShaderDispatchParams Params, TFunction<void(int OutputVal)> AsyncCallback) {
	FRDGBuilder GraphBuilder(RHICmdList);

	{
		SCOPE_CYCLE_COUNTER(STAT_MySimpleComputeShader_Execute);
		DECLARE_GPU_STAT(MySimpleComputeShader)
		RDG_EVENT_SCOPE(GraphBuilder, "MySimpleComputeShader");
		RDG_GPU_STAT_SCOPE(GraphBuilder, MySimpleComputeShader);
		
		typename FMySimpleComputeShader::FPermutationDomain PermutationVector;
		
		// Add any static permutation options here
		// PermutationVector.Set<FMySimpleComputeShader::FMyPermutationName>(12345);

		TShaderMapRef<FMySimpleComputeShader> ComputeShader(GetGlobalShaderMap(GMaxRHIFeatureLevel), PermutationVector);
		

		bool bIsShaderValid = ComputeShader.IsValid();

		if (bIsShaderValid) {
			FMySimpleComputeShader::FParameters* PassParameters = GraphBuilder.AllocParameters<FMySimpleComputeShader::FParameters>();

			
			const void* RawData = (void*)Params.Input;
			int NumInputs = 2;
			int InputSize = sizeof(int);
			FRDGBufferRef InputBuffer = CreateUploadBuffer(GraphBuilder, TEXT("InputBuffer"), InputSize, NumInputs, RawData, InputSize * NumInputs);

			PassParameters->Input = GraphBuilder.CreateSRV(FRDGBufferSRVDesc(InputBuffer, PF_R32_SINT));

			FRDGBufferRef OutputBuffer = GraphBuilder.CreateBuffer(
				FRDGBufferDesc::CreateBufferDesc(sizeof(int32), 1),
				TEXT("OutputBuffer"));

			PassParameters->Output = GraphBuilder.CreateUAV(FRDGBufferUAVDesc(OutputBuffer, PF_R32_SINT));
			

			auto GroupCount = FComputeShaderUtils::GetGroupCount(FIntVector(Params.X, Params.Y, Params.Z), FComputeShaderUtils::kGolden2DGroupSize);
			GraphBuilder.AddPass(
				RDG_EVENT_NAME("ExecuteMySimpleComputeShader"),
				PassParameters,
				ERDGPassFlags::AsyncCompute,
				[&PassParameters, ComputeShader, GroupCount](FRHIComputeCommandList& RHICmdList)
			{
				FComputeShaderUtils::Dispatch(RHICmdList, ComputeShader, *PassParameters, GroupCount);
			});

			
			FRHIGPUBufferReadback* GPUBufferReadback = new FRHIGPUBufferReadback(TEXT("ExecuteMySimpleComputeShaderOutput"));
			AddEnqueueCopyPass(GraphBuilder, GPUBufferReadback, OutputBuffer, 0u);

			auto RunnerFunc = [GPUBufferReadback, AsyncCallback](auto&& RunnerFunc) -> void {
				if (GPUBufferReadback->IsReady()) {
					
					int32* Buffer = (int32*)GPUBufferReadback->Lock(1);
					int OutVal = Buffer[0];
					
					GPUBufferReadback->Unlock();

					AsyncTask(ENamedThreads::GameThread, [AsyncCallback, OutVal]() {
						AsyncCallback(OutVal);
					});

					delete GPUBufferReadback;
				} else {
					AsyncTask(ENamedThreads::ActualRenderingThread, [RunnerFunc]() {
						RunnerFunc(RunnerFunc);
					});
				}
			};

			AsyncTask(ENamedThreads::ActualRenderingThread, [RunnerFunc]() {
				RunnerFunc(RunnerFunc);
			});
			
		} else {
			// We silently exit here as we don't want to crash the game if the shader is not found or has an error.
			
		}
	}

	GraphBuilder.Execute();
}

MySimpleComputeShader.h

复制代码
#pragma once

#include "CoreMinimal.h"
#include "GenericPlatform/GenericPlatformMisc.h"
#include "Kismet/BlueprintAsyncActionBase.h"

#include "MySimpleComputeShader.generated.h"

struct CS_TEST_API FMySimpleComputeShaderDispatchParams
{
	int X;
	int Y;
	int Z;

	
	int Input[2];
	int Output;
	
	

	FMySimpleComputeShaderDispatchParams(int x, int y, int z)
		: X(x)
		, Y(y)
		, Z(z)
	{
	}
};

// This is a public interface that we define so outside code can invoke our compute shader.
class CS_TEST_API FMySimpleComputeShaderInterface {
public:
	// Executes this shader on the render thread
	static void DispatchRenderThread(
		FRHICommandListImmediate& RHICmdList,
		FMySimpleComputeShaderDispatchParams Params,
		TFunction<void(int OutputVal)> AsyncCallback
	);

	// Executes this shader on the render thread from the game thread via EnqueueRenderThreadCommand
	static void DispatchGameThread(
		FMySimpleComputeShaderDispatchParams Params,
		TFunction<void(int OutputVal)> AsyncCallback
	)
	{
		ENQUEUE_RENDER_COMMAND(SceneDrawCompletion)(
		[Params, AsyncCallback](FRHICommandListImmediate& RHICmdList)
		{
			DispatchRenderThread(RHICmdList, Params, AsyncCallback);
		});
	}

	// Dispatches this shader. Can be called from any thread
	static void Dispatch(
		FMySimpleComputeShaderDispatchParams Params,
		TFunction<void(int OutputVal)> AsyncCallback
	)
	{
		if (IsInRenderingThread()) {
			DispatchRenderThread(GetImmediateCommandList_ForRenderCommand(), Params, AsyncCallback);
		}else{
			DispatchGameThread(Params, AsyncCallback);
		}
	}
};



DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam(FOnMySimpleComputeShaderLibrary_AsyncExecutionCompleted, const int, Value);


UCLASS() // Change the _API to match your project
class CS_TEST_API UMySimpleComputeShaderLibrary_AsyncExecution : public UBlueprintAsyncActionBase
{
	GENERATED_BODY()

public:
	
	// Execute the actual load
	virtual void Activate() override {
		// Create a dispatch parameters struct and fill it the input array with our args
		FMySimpleComputeShaderDispatchParams Params(1, 1, 1);
		Params.Input[0] = Arg1;
		Params.Input[1] = Arg2;

		// Dispatch the compute shader and wait until it completes
		FMySimpleComputeShaderInterface::Dispatch(Params, [this](int OutputVal) {
			this->Completed.Broadcast(OutputVal);
		});
	}
	
	
	
	UFUNCTION(BlueprintCallable, meta = (BlueprintInternalUseOnly = "true", Category = "ComputeShader", WorldContext = "WorldContextObject"))
	static UMySimpleComputeShaderLibrary_AsyncExecution* ExecuteBaseComputeShader(UObject* WorldContextObject, int Arg1, int Arg2) {
		UMySimpleComputeShaderLibrary_AsyncExecution* Action = NewObject<UMySimpleComputeShaderLibrary_AsyncExecution>();
		Action->Arg1 = Arg1;
		Action->Arg2 = Arg2;
		Action->RegisterWithGameInstance(WorldContextObject);

		return Action;
	}

	UPROPERTY(BlueprintAssignable)
	FOnMySimpleComputeShaderLibrary_AsyncExecutionCompleted Completed;

	
	int Arg1;
	int Arg2;
	
};

6. 着色器实现

MySimpleComputeShader.usf

复制代码
#include "/Engine/Public/Platform.ush"

Buffer<int> Input;
RWBuffer<int> Output;

[numthreads(THREADS_X, THREADS_Y, THREADS_Z)]
void MySimpleComputeShader(
	uint3 DispatchThreadId : SV_DispatchThreadID,
	uint GroupIndex : SV_GroupIndex )
{
	// Outputs one number
	Output[0] = Input[0] * Input[1];
}

7. 分配 work groups

关于整个解释

https://learnopengl.com/Guest-Articles/2022/Compute-Shaders/Introduction​learnopengl.com/Guest-Articles/2022/Compute-Shaders/Introduction

numthreads(THREADS_X, THREADS_Y, THREADS_Z)

是在HLSL中分配计算空间的语法


8. 计算和输出


9. 额外添加参数流程





相关推荐
AI视觉网奇1 天前
ue 蓝图动画学习笔记
笔记·学习·ue5
陈友松1 天前
UE5 文件传输插件:支持任意类型,任意大小(超过2G)的文件上传和下载
ue5
AI视觉网奇2 天前
CBAudio2Face
ue5·audio2face
AI视觉网奇2 天前
ue 操作 metahuman
ue5
AI视觉网奇2 天前
ue python脚本 获取资产
笔记·ue5
AI视觉网奇2 天前
audio2face docker方式
docker·ue5
会思考的猴子2 天前
UE5 笔记二 GameplayAbilitySystem Dash(冲刺)
笔记·ue5
AI视觉网奇3 天前
audio2face ue插件形式实战笔记
笔记·ue5
nutriu4 天前
从UE5.6DNA 导出指定LOD层级的ARkit52个表情或者Metahuman263个表情教程 #BlendShapeExporter
ue5·数字人·arkit·blendshape·虚拟角色·meta human·dna
AI视觉网奇4 天前
nvcr.io 登录方法
docker·ue5