Machine learing中通过pandas.factorize将object值变成离散值

深入了解 pandas.factorize 函数

pandas.factorize() 是 Pandas 库中一个功能强大且多用途的函数。它被用来将对象编码为枚举类型或分类变量。

功能概览:

这个方法非常有用,尤其是当我们需要获取一个数组的数字表示,并且只关心识别其中不同值的情况。factorize 提供了多种形式的调用方式,可作为顶级函数 pandas.factorize(),以及 Series.factorize()Index.factorize() 方法使用。

参数解析:

  • values(序列) :一个一维序列,表示需要进行因子化的数据。如果序列不是 Pandas 对象,会在因子化之前被转换为 ndarray。
  • sort(布尔型,默认为 False) :对唯一值进行排序并洗牌,以保持关系。
  • use_na_sentinel(布尔型,默认为 True) :若为 True,则使用哨兵值 -1 代表 NaN 值。若为 False,则 NaN 值将被编码为非负整数,并且在值的唯一值中不会删除 NaN。

返回结果:

  • codes(ndarray) :一个整数 ndarray,作为唯一值的索引器。uniques.take(codes) 将具有与原始值相同的值。
  • uniques(ndarray、Index 或 Categorical) :唯一的有效值。当值是 Categorical 时,uniques 是一个 Categorical。当值是其他 Pandas 对象时,返回一个 Index。否则,返回一个一维 ndarray。

注意事项:

即使值中存在缺失值,uniques 也不会包含针对缺失值的条目。

示例和用法:

以下是一些使用 pandas.factorize() 的示例:

php 复制代码
>>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"))
>>> codes
array([0, 0, 1, 2, 0])
>>> uniques
array(['b', 'a', 'c'], dtype=object)
  • 排序和关系维护:使用 sort=True,uniques 将被排序,并且 codes 将被洗牌以维护关系。

    ini 复制代码
    codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"),
    ...                               sort=True)
    >>> codes
    array([1, 1, 0, 2, 1])
    >>> uniques
    array(['a', 'b', 'c'], dtype=object)
  • 处理 NaN 值:当 use_na_sentinel=True 时(默认),缺失值在 codes 中用-1 表示,并且在 uniques 中不包含缺失值。

    php 复制代码
    codes, uniques = pd.factorize(np.array(['b', None, 'a', 'c', 'b'], dtype="O"))
    >>> codes
    array([ 0, -1,  1,  2,  0])
    >>> uniques
    array(['b', 'a', 'c'], dtype=object)

对于不同的 Pandas 对象,因子化的结果类型会有所不同。对于 Categoricals,将返回一个 Categorical;对于其他 Pandas 对象,将返回一个 Index。

css 复制代码
>>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c'])
>>> codes, uniques = pd.factorize(cat)
>>> codes
array([0, 0, 1])
>>> uniques
['a', 'c']
Categories (3, object): ['a', 'b', 'c']

pandas.factorize() 是一个高效的工具,能够有效地处理分类数据表示和缺失值的编码。

相关推荐
逻极4 小时前
Scikit-learn 实战:15 分钟构建生产级中国房价预测模型
python·机器学习·scikit-learn
Macbethad6 小时前
基于世界模型的自动驾驶控制算法
人工智能·机器学习·自动驾驶
Master_oid6 小时前
机器学习21:可解释机器学习(Explainable Machine Learning)(上)
人工智能·机器学习
大千AI助手10 小时前
敏感性分析(Sensitivity Analysis)在机器学习中的应用详解
人工智能·机器学习·敏感性分析·sa·大千ai助手·sensitivity·可解释ai
编程小白_正在努力中10 小时前
从入门到精通:周志华《机器学习》第一、二章深度解析
人工智能·机器学习
编码追梦人10 小时前
基于 ESP32 与机器学习的智能语音家居控制系统
人工智能·机器学习
koo36410 小时前
李宏毅机器学习笔记
人工智能·笔记·机器学习
nix.gnehc10 小时前
机器学习概念
人工智能·机器学习
长桥夜波10 小时前
机器学习日报17
人工智能·机器学习
Clarence Liu10 小时前
机器学习(4) cost function(代价函数)
人工智能·机器学习