论文阅读——MCAN(cvpr2019)

补充一下MCAN-VQA:

对图片的处理:首先输入图片到Faster R-CNN,会先设定一个判断是否检测到物体的阈值,这样动态的生成m∈[10,100]个目标,然后从检测到的对应的区域通过平均池化提取特征。第i个物体特征表示为:,所以一张图片就被表示为一个特征矩阵:

对问题的处理:首先分成词,最多分为14个词,然后用300-D GloVe word embeddings变成向量,然后过LSTM,使用LSTM所有单词的输出,得到问题特征矩阵:,n是分成的单词个数。

m和n可能不一样,用0填充到max(m,n)。

然后有了图片和问题的特征矩阵X和Y,送入下面的Deep Co-Attention Learning模块,由L层MAC层堆叠

这个MAC层分为两种,stacking和encoder-decoder,和transformer很像,大概如下图:

Deep Co-Attention Learning模块输出的,送入Multimodal Fusion and Output Classifier模块,这个模块有个两层的MLP,做attention reduction

α是学习到的权重。

然后线性多模态融合:

得到Z之后后面就是做分类,sigmoid。

一些实验结果:

所以SA(Y)-SGA(X,Y)比较好,Encoder-decoder比较好。

相关推荐
Blossom.11830 分钟前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算
zxsz_com_cn1 小时前
设备预测性维护典型案例:中讯烛龙赋能高端制造降本增效
人工智能
人工智能培训1 小时前
图神经网络初探(1)
人工智能·深度学习·知识图谱·群体智能·智能体
love530love2 小时前
Windows 11 下 Z-Image-Turbo 完整部署与 Flash Attention 2.8.3 本地编译复盘
人工智能·windows·python·aigc·flash-attn·z-image·cuda加速
雪下的新火2 小时前
AI工具-Hyper3D
人工智能·aigc·blender·ai工具·笔记分享
Das13 小时前
【机器学习】01_模型选择与评估
人工智能·算法·机器学习
墨染天姬3 小时前
【AI】AI时代,模组厂商如何建立自己的AI护城河?
人工智能
aigcapi3 小时前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
字节跳动开源3 小时前
Midscene v1.0 发布 - 视觉驱动,UI 自动化体验跃迁
前端·人工智能·客户端