论文阅读——MCAN(cvpr2019)

补充一下MCAN-VQA:

对图片的处理:首先输入图片到Faster R-CNN,会先设定一个判断是否检测到物体的阈值,这样动态的生成m∈[10,100]个目标,然后从检测到的对应的区域通过平均池化提取特征。第i个物体特征表示为:,所以一张图片就被表示为一个特征矩阵:

对问题的处理:首先分成词,最多分为14个词,然后用300-D GloVe word embeddings变成向量,然后过LSTM,使用LSTM所有单词的输出,得到问题特征矩阵:,n是分成的单词个数。

m和n可能不一样,用0填充到max(m,n)。

然后有了图片和问题的特征矩阵X和Y,送入下面的Deep Co-Attention Learning模块,由L层MAC层堆叠

这个MAC层分为两种,stacking和encoder-decoder,和transformer很像,大概如下图:

Deep Co-Attention Learning模块输出的,送入Multimodal Fusion and Output Classifier模块,这个模块有个两层的MLP,做attention reduction

α是学习到的权重。

然后线性多模态融合:

得到Z之后后面就是做分类,sigmoid。

一些实验结果:

所以SA(Y)-SGA(X,Y)比较好,Encoder-decoder比较好。

相关推荐
_illusion_几秒前
反向传播的人生哲学:深度复盘的力量
人工智能·python·机器学习
OpenCSG3 分钟前
GLM-4.7上线:国产开源编码大模型的新进展
人工智能·开源·opencsg·agentichub
算法与编程之美3 分钟前
解决tensor的shape不为1,如何转移到CPU的问题
人工智能·python·深度学习·算法·机器学习
natide4 分钟前
词汇/表达差异-8-Token Overlap(词元重叠度)
大数据·人工智能·深度学习·算法·自然语言处理·nlp·知识图谱
leagsoft_10035 分钟前
面对AI+自动化攻击的入侵,企业如何选择平替微软AD集权保护方案?
人工智能·微软ad替换·信创ad替换
工藤学编程8 分钟前
零基础学AI大模型之Agent智能体
人工智能
JosieBook9 分钟前
【大模型】AI Ping 限时开放:GLM-4.7 与 MiniMax M2.1 免费体验,赋能真实工程场景
人工智能
我很哇塞耶10 分钟前
2025年加倍投入AI的九大品牌
大数据·人工智能·ai·大模型
芷栀夏11 分钟前
AI Ping新旗舰模型实战解析:GLM-4.7与MiniMax M2.1
人工智能·ai·ai编程
五度易链-区域产业数字化管理平台14 分钟前
行研 + 大数据 + AI:五度易链高质量产业数据库的构建路径与技术实践
大数据·人工智能