论文阅读——MCAN(cvpr2019)

补充一下MCAN-VQA:

对图片的处理:首先输入图片到Faster R-CNN,会先设定一个判断是否检测到物体的阈值,这样动态的生成m∈[10,100]个目标,然后从检测到的对应的区域通过平均池化提取特征。第i个物体特征表示为:,所以一张图片就被表示为一个特征矩阵:

对问题的处理:首先分成词,最多分为14个词,然后用300-D GloVe word embeddings变成向量,然后过LSTM,使用LSTM所有单词的输出,得到问题特征矩阵:,n是分成的单词个数。

m和n可能不一样,用0填充到max(m,n)。

然后有了图片和问题的特征矩阵X和Y,送入下面的Deep Co-Attention Learning模块,由L层MAC层堆叠

这个MAC层分为两种,stacking和encoder-decoder,和transformer很像,大概如下图:

Deep Co-Attention Learning模块输出的,送入Multimodal Fusion and Output Classifier模块,这个模块有个两层的MLP,做attention reduction

α是学习到的权重。

然后线性多模态融合:

得到Z之后后面就是做分类,sigmoid。

一些实验结果:

所以SA(Y)-SGA(X,Y)比较好,Encoder-decoder比较好。

相关推荐
33三 三like2 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a2 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者3 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗3 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_3 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信4 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235864 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs4 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮4 小时前
AI 视觉连载2:灰度图
人工智能