word2vec的算法原理(不用开源包,python实现)

看了很多关于word2vec的算法原理的介绍文章,看明白了,但依然有点不深刻。

以下是python直接实现的word2vec的算法,简单明了,读完就懂了

python 复制代码
import numpy as np

def tokenize(text):
    return text.lower().split()

def generate_word_pairs(sentences, window_size):
    word_pairs = []
    for sentence in sentences:
        for i, center_word in enumerate(sentence):
            for j in range(i - window_size, i + window_size + 1):
                if j >= 0 and j < len(sentence) and j != i:
                    context_word = sentence[j]
                    word_pairs.append((center_word, context_word))
    return word_pairs

def create_word_index(sentences):
    word_set = set(word for sentence in sentences for word in sentence)
    return {word: i for i, word in enumerate(word_set)}


def one_hot_encoding(word, word_index):
    one_hot = np.zeros(len(word_index))
    one_hot[word_index[word]] = 1
    return one_hot

def train_word2vec(sentences, vector_size, window_size, learning_rate, epochs):
    word_index = create_word_index(sentences)
    W1 = np.random.rand(len(word_index), vector_size)
    W2 = np.random.rand(vector_size, len(word_index))

    word_pairs = generate_word_pairs(sentences, window_size)

    for epoch in range(epochs):
        loss = 0
        for center_word, context_word in word_pairs:
            center_word_encoded = one_hot_encoding(center_word, word_index)
            context_word_encoded = one_hot_encoding(context_word, word_index)

            hidden_layer = np.dot(center_word_encoded, W1)
            output_layer = np.dot(hidden_layer, W2)

            exp_output = np.exp(output_layer)
            softmax_output = exp_output / np.sum(exp_output)

            error = softmax_output - context_word_encoded

            dW2 = np.outer(hidden_layer, error)
            dW1 = np.outer(center_word_encoded, np.dot(W2, error))

            W1 -= learning_rate * dW1
            W2 -= learning_rate * dW2

            loss += -np.sum(output_layer * context_word_encoded) + np.log(np.sum(exp_output))

        print(f"Epoch: {epoch + 1}, Loss: {loss}")

    return W1, word_index

sentences = [
    tokenize("This is a sample sentence"),
    tokenize("Another example sentence"),
    tokenize("One more example")
]

vector_size = 100
window_size = 2
learning_rate = 0.01
epochs = 100

W1, word_index = train_word2vec(sentences, vector_size, window_size, learning_rate, epochs)

for word, index in word_index.items():
    print(f"{word}: {W1[index]}")
相关推荐
my rainy days13 分钟前
C++:友元
开发语言·c++·算法
haoly198915 分钟前
数据结构和算法篇-归并排序的两个视角-迭代和递归
数据结构·算法·归并排序
微笑尅乐15 分钟前
中点为根——力扣108.讲有序数组转换为二叉搜索树
算法·leetcode·职场和发展
查士丁尼·绵40 分钟前
笔试-羊狼过河
python
摸鱼的老谭43 分钟前
构建Agent该选Python还是Java ?
java·python·agent
鄃鳕1 小时前
python 字典 列表 类比c++【python】
c++·python
im_AMBER1 小时前
算法笔记 05
笔记·算法·哈希算法
可触的未来,发芽的智生1 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
夏鹏今天学习了吗1 小时前
【LeetCode热题100(46/100)】从前序与中序遍历序列构造二叉树
算法·leetcode·职场和发展
吃着火锅x唱着歌1 小时前
LeetCode 2389.和有限的最长子序列
算法·leetcode·职场和发展