看了很多关于word2vec的算法原理的介绍文章,看明白了,但依然有点不深刻。
以下是python直接实现的word2vec的算法,简单明了,读完就懂了
python
import numpy as np
def tokenize(text):
return text.lower().split()
def generate_word_pairs(sentences, window_size):
word_pairs = []
for sentence in sentences:
for i, center_word in enumerate(sentence):
for j in range(i - window_size, i + window_size + 1):
if j >= 0 and j < len(sentence) and j != i:
context_word = sentence[j]
word_pairs.append((center_word, context_word))
return word_pairs
def create_word_index(sentences):
word_set = set(word for sentence in sentences for word in sentence)
return {word: i for i, word in enumerate(word_set)}
def one_hot_encoding(word, word_index):
one_hot = np.zeros(len(word_index))
one_hot[word_index[word]] = 1
return one_hot
def train_word2vec(sentences, vector_size, window_size, learning_rate, epochs):
word_index = create_word_index(sentences)
W1 = np.random.rand(len(word_index), vector_size)
W2 = np.random.rand(vector_size, len(word_index))
word_pairs = generate_word_pairs(sentences, window_size)
for epoch in range(epochs):
loss = 0
for center_word, context_word in word_pairs:
center_word_encoded = one_hot_encoding(center_word, word_index)
context_word_encoded = one_hot_encoding(context_word, word_index)
hidden_layer = np.dot(center_word_encoded, W1)
output_layer = np.dot(hidden_layer, W2)
exp_output = np.exp(output_layer)
softmax_output = exp_output / np.sum(exp_output)
error = softmax_output - context_word_encoded
dW2 = np.outer(hidden_layer, error)
dW1 = np.outer(center_word_encoded, np.dot(W2, error))
W1 -= learning_rate * dW1
W2 -= learning_rate * dW2
loss += -np.sum(output_layer * context_word_encoded) + np.log(np.sum(exp_output))
print(f"Epoch: {epoch + 1}, Loss: {loss}")
return W1, word_index
sentences = [
tokenize("This is a sample sentence"),
tokenize("Another example sentence"),
tokenize("One more example")
]
vector_size = 100
window_size = 2
learning_rate = 0.01
epochs = 100
W1, word_index = train_word2vec(sentences, vector_size, window_size, learning_rate, epochs)
for word, index in word_index.items():
print(f"{word}: {W1[index]}")