我们在上一篇文章【陪伴式刷题】Day 43|动态规划|121.买卖股票的最佳时机中介绍了如何从1笔交易中获取的最大利润的方法,今天这篇我们进一步拓展开来,从123.买卖股票的最佳时机 III和188.买卖股票的最佳时机 IV两道题,分析下如何从最多2笔交易中获取的最大利润,进一步到如何从最多k笔交易中获取的最大利润(刷题顺序以及题解参考卡哥的代码随想录)
123.买卖股票的最佳时机 III
题目描述
给定一个数组,它的第 **i
个元素是一支给定的股票在第 i
**天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [3,3,5,0,0,3,1,4] 输出: 6 解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。 随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入: prices = [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: prices = [7,6,4,3,1] 输出: 0 解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入: prices = [1] 输出: 0
提示:
1 <= prices.length <= 10^5
0 <= prices[i] <= 10^5
地址
解题方法
java
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][5];
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.length; i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return Math.max(dp[prices.length - 1][2], dp[prices.length - 1][4]);
}
}
dp[i][j]
表示第i
天状态为j
时的最大利润
- 0:初始状态
- 1:第一次持有状态
- 2:第一次卖出后状态
- 3:第二次持有状态
- 4:第二次卖出后状态
如果当天状态是第一次持有状态,可能来自于:前一天持有继续保持或者前一天未持有当天购买
如果当天状态是第一次卖出状态,可能来自于:前一天卖出继续保持或者前一天持有当天卖出
如果当天状态是第二次持有状态,可能来自于:前一天持有继续保持或者前一天未持有当天购买
如果当天状态是第二次卖出状态,可能来自于:前一天卖出继续保持或者前一天持有当天卖出
复杂度分析
-
时间复杂度:O(n),其中 n 是数组元素数
-
空间复杂度:O(n),其中 n 是数组元素数
188.买卖股票的最佳时机 IV
题目描述
给你一个整数数组 prices
和一个整数 k
,其中 prices[i]
是某支给定的股票在第 i
**天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k
笔交易。也就是说,你最多可以买 k
次,卖 k
次。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: k = 2, prices = [2,4,1] 输出: 2 解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入: k = 2, prices = [3,2,6,5,0,3] 输出: 7 解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。 随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示:
1 <= k <= 100
1 <= prices.length <= 1000
0 <= prices[i] <= 1000
地址
解题方法
java
class Solution {
public int maxProfit(int k, int[] prices) {
int[][] dp = new int[prices.length][1 + 2 * k];
// 初始化
for (int i = 0; i < k; i++) {
dp[0][1 + i * 2] = -prices[0];
}
int result = 0;
for (int i = 1; i < prices.length; i++) {
for (int j = 1; j < 2 * k + 1; j++) {
if (j % 2 == 0) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + prices[i]);
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i]);
}
result = Math.max(result, dp[i][j]);
}
}
return result;
}
}
188其实是123的进阶版,原先确定的2次变为不确定的k次,这样,我们按照123的递推公式可以总结出k
为奇数时为持有的状态,此时的持有的状态可能来自于:前一天持有继续保持或者前一天未持有当天购买;k
为奇数时为卖出的状态,此时的卖出的状态可能来自于:前一天卖出继续保持或者前一天持有当天卖出,由于题目要求不是一定要达到k
次,所以我们可以在遍历的过程中保存最大值,然后返回即可。
复杂度分析
- 时间复杂度:O(n*k),其中 n 是数组元素数
- 空间复杂度:O(n*k),其中 n 是数组元素数