关于点赞业务对MySQL和Redis和MongoDB的思考

点赞

​ 在我个人理解中,点赞业务比较频繁,很多人业务可能都会有这个,比如:博客,视频,文章,动态,评论等,但是不应该是核心业务,不应该大量地请求MySQL数据库,给数据库造成大量的资源消耗,MySQL的数据库是非常宝贵的.

以某音为例,当我去搜索的时候,全抖音比较高的点赞数目应该是在1200w - 2000w,我们自己的业务肯定答不到这么高的,但是假设有10个100w的点赞的博客,user_id为用户ID,publication_id为博客的id

  1. 第一种方式是直接操作数据库.每次有点赞或者取消点赞操作时,就更新MySQL数据库的点赞数.同时,插入或者更新一个user_id和publication_id的数据行,如果点赞操作非常频繁,会对数据库产生很大的压力.如果有大量的点赞记录,会对数据库产生很大的数据量,一篇文章,100w+的点赞的记录,对于MySQL来说,是非常恐怖的.

  2. 第二种方式是通过MySQL + Redis的Set来实现,具体代码如下,以下的代码为B站Redis黑马点评项目:

    java 复制代码
    @Override
    public Result likeBlog(Long id){
        // 1. 获取登录用户
        Long userId = UserHolder.getUser().getId();
    
        // 2. 判断当前登录用户是否已经点赞
        String key = BLOG_LIKED_KEY + id;
        Boolean isMember = stringRedisTemplate.opsForSet().isMember(key, userId.toString());
    
        if(BooleanUtil.isFalse(isMember)){
            // 3. 如果未点赞,可以点赞
            // 3.1 数据库点赞数+1
            boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
    
            // 3.2 保存用户到Redis的set集合
            if(isSuccess){
                stringRedisTemplate.opsForSet().add(key, userId.toString());
            }
        } else {
            // 4. 如果已点赞,取消点赞
            // 4.1 数据库点赞数-1
            boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
    
            // 4.2 把用户从Redis的set集合移除
            if(isSuccess){
                stringRedisTemplate.opsForSet().remove(key, userId.toString());
            }
        }
    }

    这样造成的问题是,Redis是内存数据库,点赞信息存储在内存中。当点赞数量非常大时,会占用大量内存。

    下面测试一下,一个key为"userId:114514:publication_id:738836",value为100000-1100000的数据

    • 数据量

      shell 复制代码
       scard userId:114514:publication_id:738836
    • 判断一个value是否存在这个set中-----(对应的业务为"判断当前登录用户是否已经点赞")

      java 复制代码
          @Test
          public void selectBigKey() {
              String key = "userId:114514:publication_id:738836";
              String value1 = "100000";
              String value2 = "5000000";
              // 记录开始时间
              long startTime = System.nanoTime();
      
              boolean cacheSet1 = RedisUtils.containsInCacheSet(key, value1);
              if (cacheSet1) {
                  System.out.println("代码2:" + "存在这个value");
              } else {
                  System.out.println("代码2:" + "不存在这个value");
              }
              // 记录结束时间
              long endTime = System.nanoTime();
      
              // 计算执行时间(以毫秒为单位)
              long executionTime = (endTime - startTime) / 1_000_000; // 将纳秒转换为毫秒
      
              System.out.println("代码执行时间1: " + executionTime + " 毫秒");
      
              // 记录开始时间
              long startTime2 = System.nanoTime();
      
              boolean cacheSet2 = RedisUtils.containsInCacheSet(key, value2);
              if (cacheSet2) {
                  System.out.println("代码2:" + "存在这个value");
              } else {
                  System.out.println("代码2:" + "不存在这个value");
              }
      
              // 记录结束时间
              long endTime2 = System.nanoTime();
      
              // 计算执行时间(以毫秒为单位)
              long executionTime2 = (endTime2 - startTime2) / 1_000_000; // 将纳秒转换为毫秒
      
              System.out.println("代码执行时间2: " + executionTime2 + " 毫秒");
      
          }

      可以看到,其实对于时间来说,61毫秒和66毫秒可以说时间非常短了,不愧是redis,即使数据量很大,但是查询一个value是否在比较大的set的效率是非常短的.

    • 往一个key中添加一个value,或者删除一个value--->(对应一个点赞,和取消点赞)

      java 复制代码
          @Test
          public void addAndRemoveElementFromBigKey() {
              String key = "userId:114514:publication_id:738836";
              String value1 = "10000000";
              String value2 = "200000";
      
              // 记录开始时间
              long startTime = System.nanoTime();
      
              boolean cacheSet1 = RedisUtils.addToCacheSet(key, value1);
      
              // 记录结束时间
              long endTime = System.nanoTime();
      
              // 计算执行时间(以毫秒为单位)
              long executionTime = (endTime - startTime) / 1_000_000; // 将纳秒转换为毫秒
      
              System.out.println("添加一个元素的执行时间: " + executionTime + " 毫秒");
      
              // 记录开始时间
              long startTime2 = System.nanoTime();
      
              boolean cacheSet2 = RedisUtils.removeFromCacheSet(key, value2);
      
              // 记录结束时间
              long endTime2 = System.nanoTime();
      
              // 计算执行时间(以毫秒为单位)
              long executionTime2 = (endTime2 - startTime2) / 1_000_000; // 将纳秒转换为毫秒
      
              System.out.println("删除一个元素的代码执行时间: " + executionTime2 + " 毫秒");
      
          }

      但从时间来讲,只有一个字:快

    • 查询占用的内存的空间

      shell 复制代码
      MEMORY USAGE  userId:114514:publication_id:738836

​ 其实可以看到,大概是占用66mb,如果用户的id为雪花算法的id,那可能占用的内存100mb

以上来说,主要还是一个bigkey的问题,如果点赞的数量过大,占用的内存过大,宝贵的内存不应该给这种业务.

  1. 自然而然,我们想到用非关系型数据库,但是不要是基于内存的,我想到的是用MongoDB的方案

    我们可以往MongoDB中插入一条这样的数据:

    javascript 复制代码
    db.collectionName.insertOne({
      "id": "yourIdValue",
      "userId": yourUserIdValue,
      "type": yourTypeValue,
      "likedItemId": yourLikedItemIdValue,
      "createTime": new Date("yourCreateTimeValue")
    });

    id 主键id,userId为用户的ID,type为文章或者动态或者其他的类型,likedItemId为文章或者动态或者其他的类型的主键ID,createTime为点赞时间

    在MongoDB中,可以使用createIndex方法来创建唯一索引。为userId,typelikedItemId字段创建一个唯一索引。

    javascript 复制代码
    db.collectionName.createIndex(
      { "userId": 1, "type": 1, "likedItemId": 1 },
      { unique: true, name: "unique_index_name" }
    );

    详细解释:

    • collectionName:集合名称。
    • unique_index_name:你想要给索引起的名字,可以根据你的需求替换为其他名称。

    这个命令将在collectionName集合上创建一个名为unique_index_name的唯一索引,涵盖了userIdtypelikedItemId字段。 1表示升序,如果需要降序索引,可以使用-1unique: true选项确保索引是唯一的。

    执行这个命令后,如果有重复的组合出现在这三个字段上,MongoDB将会阻止插入并抛出错误。

    即如果里面有记录为已经点过赞,点赞就是往里面加记录,取消点赞就是删除记录

    详细代码如下:

    java 复制代码
    @Service
    public class LikeServiceImpl implements LikeService {
        @Autowired
        private MongoTemplate mongoTemplate;
    
        @Autowired
        private PublicationService publicationService;
    
        /**
         * 为动态或者文章点赞
         *
         * @param publicationId 动态或者文章的ID
         * @param userId        用户的ID
         * @param type          类型,区分是文章还是动态
         * @return 点赞总数
         */
        @Override
        public Integer likePublication(Long publicationId, Long userId, Integer type) {
            // 构建查询条件
            Criteria criteria = Criteria.where("userId").is(userId)
                    .and("type").is(type)
                    .and("likedItemId").is(publicationId);
            // 创建查询对象并应用查询条件
            Query query = new Query(criteria);
            boolean isExists = mongoTemplate.exists(query, PublicationLike.class);
    
            if (isExists) {
                Asserts.fail("重复点赞");
            }
            //将点赞记录保存到mongodb
            PublicationLike publicationLike = new PublicationLike();
            publicationLike.setType(type);
            publicationLike.setCreateTime(DateUtil.date());
            publicationLike.setLikedItemId(publicationId);
            publicationLike.setUserId(userId);
            PublicationLike savedLike = mongoTemplate.save(publicationLike);
            //点赞数统计
    
            String redisLikeCountKey = String.format(RedisConstant.PUBLICATION_LIKE_COUNT, publicationId, userId, type);
            Long likeCount = RedisUtils.getAtomicValueWithDefault(redisLikeCountKey);
            //如果没有缓存过点赞数,则查询数据库
            if (likeCount.equals(-1L)) {
                Publication publication = publicationService.getById(publicationId);
                RedisUtils.setAtomicValue(redisLikeCountKey, publication.getLikeCount());
                return publication.getLikeCount();
            } else {
                //返回点赞数+1
                return Math.toIntExact(RedisUtils.incrAtomicValue(redisLikeCountKey));
            }
    
    
        }
    
        @Override
        public Integer unlikePublication(Long publicationId, Long userId, Integer type) {
            // 构建查询条件
            Criteria criteria = Criteria.where("userId").is(userId)
                    .and("type").is(type)
                    .and("likedItemId").is(publicationId);
            // 创建查询对象并应用查询条件
            Query query = new Query(criteria);
            boolean isExists = mongoTemplate.exists(query, PublicationLike.class);
    
            if (!isExists) {
                Asserts.fail("未点赞过该内容,无法取消点赞");
            }
    
            // 从MongoDB中删除点赞记录
            mongoTemplate.remove(query, PublicationLike.class);
    
            // 更新点赞数统计
            String redisLikeCountKey = String.format(RedisConstant.PUBLICATION_LIKE_COUNT, publicationId, userId, type);
            Long likeCount = RedisUtils.getAtomicValueWithDefault(redisLikeCountKey);
    
            // 如果点赞数存在于缓存中,减少点赞数并返回
            if (!likeCount.equals(-1L)) {
                long newLikeCount = RedisUtils.decrAtomicValue(redisLikeCountKey);
                return Math.toIntExact(newLikeCount);
            } else {
                // 如果点赞数没有缓存,查询数据库并更新缓存
                Publication publication = publicationService.getById(publicationId);
                if (publication != null) {
                    RedisUtils.setAtomicValue(redisLikeCountKey, publication.getLikeCount());
                    return publication.getLikeCount();
                } else {
                    Asserts.fail("无法获取点赞数");
                    return 0;
                }
            }
        }
    
    }
相关推荐
aloha_78918 小时前
从零记录搭建一个干净的mybatis环境
java·笔记·spring·spring cloud·maven·mybatis·springboot
阑梦清川1 天前
JavaEE进阶---第一个SprintBoot项目创建过程&&&我的感受
java·java-ee·springboot
A-bodgie1 天前
Spring 中的 Environment 对象
java·后端·spring·servlet·springboot
小布布的不1 天前
MyBatis 返回 Map 或 List<Map>时,时间类型数据,默认为LocalDateTime,响应给前端默认含有‘T‘字符
前端·mybatis·springboot
小沈同学呀1 天前
Mac M1 Docker创建Rocketmq集群并接入Springboot项目
macos·docker·java-rocketmq·springboot
东皋长歌2 天前
SpringBoot+ClickHouse集成
clickhouse·springboot
程序员徐师兄2 天前
基于 JavaWeb 的宠物商城系统(附源码,文档)
java·vue·springboot·宠物·宠物商城
果冻眼企鹅2 天前
常见用于从 HTTP 请求中提取数据的注解
springboot
你白勺男孩TT3 天前
Vue项目中点击按钮后浏览器屏幕变黑,再次点击恢复的解决方法
vue.js·vue·springboot
小云小白3 天前
springboot 传统应用程序,适配云原生改造
云原生·系统架构·k8s·springboot