MySQL - 4种基本索引、聚簇索引和非聚索引、索引失效情况

目录

一、索引

1.1、简单介绍

1.2、索引的分类

1.2.1、主键索引

1.2.2、单值索引(单列索引、普通索引)

1.2.3、唯一索引

1.2.4、复合索引

1.2.5、复合索引经典问题

1.3、索引原理

1.3.1、主键自动排序

1.3.2、索引的底层原理

[1.3.3、B 树和 B+树的区别](#1.3.3、B 树和 B+树的区别)

1.4、聚簇索引和非聚簇索引

[1.4.1、innoDB 中的主键索引](#1.4.1、innoDB 中的主键索引)

1.4.2、使用聚簇索引的优势

1.4.3、使用聚簇索引需要注意什么

[1.4.4、为什么主键通常建议使用自增 id](#1.4.4、为什么主键通常建议使用自增 id)

1.5、索引失效的场景


一、索引


1.1、简单介绍

索引就是一种帮助 mysql 提高查询效率的数据结构.

优点:

  1. 大大增加了查询速度.

缺点:

  1. 索引实际上是一张表,因此需要消耗一部分空间资源.
  2. 对表中的数据进行增删改的时候,需要更新索引,因此速度会受到一定影响.

1.2、索引的分类

1.2.1、主键索引

实际上就是我们创建数据库时指定的主键(主键索引值不能为空、不能重复.),会自动创建索引,叫做 "主键索引",在 innodb 引擎中就是所谓的 "聚簇索引".

例如,以 id 为主键建表

create table user(id int PRIMARY KEY, name varchar(20), age int);

然后通过以下命令查看 user 表的索引

show index from user;

1.2.2、单值索引(单列索引、普通索引)

就是为表中的某一列创建的索引,一个表中可以有多个单列索引.

例如,表中有字段 id、name、age,那么为 其中的 name 创建一个索引,就叫单列索引.

创建方式有以下两种:

a)建表时创建(注意,这种方式创建,索引名和字段名一致)

# 给 name 单独创建索引
create table user(id int primary key, name varchar(20), age int, key(name));

# 给 name 和 age 分别创建索引
create table user(id int primary key, name varchar(20), age int, key(name), key(age));

b)建表后创建

create table user(id int primary key, name varchar(20), age int);

create index index_name on user(name);

c)删除索引

drop index 索引名 on 表明

1.2.3、唯一索引

在创建表的时候,有时候我们会通过 unique 指定某个字段唯一,这个时候就会创建唯一索引.

Ps:允许有 null 值,并且可以有多个.

创建方式有以下两种:

a)建表时指定

# 第一种写法
create table user(id int primary key, name varchar(20) unique, age int);

# 第二种写法
create table user(id int primary key, name varchar(20), age int, unique(name));

b)建表后创建

create unique index index_name on user(name);

1.2.4、复合索引

就是我们为表中的多个字段一起创建一个索引.

Ps:查询时,在 where 条件后,必须要使用 and 连接复合索引字段,否则不生效.

创建方式有以下两种:

a)建表时创建

create table user(id int primary key, name varchar(20), age int, key(name, age));

b)建表后创建

create index name_age_index on user(name, age);

1.2.5、复合索引经典问题

问题:有一个用户表,给 name、age、gender 三个字段创建了一个复合索引 key(name, age, gender),以下场景,哪种查询索引会生效?

以下是 where 查询后通过 and 拼接的字段.

  1. name 生效
  2. name age 生效
  3. name age gender 生效
  4. name gender age 生效
  5. age gender 失效
  6. gender 失效
  7. gender age name 生效

该怎么判断呢?符合索引生效只要满足以下任意一个原则即可:

  1. 最左前缀元组:必须包含做前缀,也就意味着 name、 name age、name age gender 是生效的.
  2. mysql 引擎为了更好的利用索引,在查询过程中会动态调整查询字段顺序,便于利用索引,也就意味着只要包含所有索引字段即可(任意的组合都可以).

1.3、索引原理

1.3.1、主键自动排序

当我创建一个 user 表(含主键 id),然后按照无序 id 的方式插入数据,会发现查询结果尽然按照 主键 id 排序了

为什么会进行排序呢?

排序之后相对来说,查询更快. 例如有 10 个自增 id,现在查询 id = 3 的,那么只需要向下对比三次即可得到,而对于无序数据来说每次都需要遍历一遍数据才能得到.

这也就说明为啥主键不建议使用 uuid 去建立,而是使用 int 类型?因为在主键建立索引的时候,会先根据表中的主键去排序,排序后在查询效率会更高.

1.3.2、索引的底层原理

假设有如下表和信息

索引的数据结构就是一个 b+ 树,++原理如下++

a)排序,形成链表:表中的每一条数据组织成一个链表中的一个节点,结构由三部分构成:"主键 + 数据 + 指针",数据就是表中的非主键索引字段(name, age),指针就是用来指向下一个节点,这些节点会现经过主键 id 的排序,最后组织成一个链表的结构,得到b+树的叶子节点 如下

b)页管理:将链表进行分页管理,每一页的大小默认存储 16kb,假设如下图(真实情况一页存放的数据有很多).

c)页目录管理:将每一页最左边节点的主键 和 指针 拿出来存放到页目录中,页目录的默认大小也是 16kb

d)如果页目录的大小占满了,那么可能还会继续向上生成页目录(父节点),不过一般开发存储的数据,树的高度都不会超过 4 的,也就是说,当需要查找某一数据时,最多只需要 1~3 次 I/O 操作(注意:顶层的根节点时在内存中的).

1.3.3、B 树和 B+树的区别

B+ 树相当于是在 B 上的一种优化,主要区别如下:

  1. B+ 树非叶子节点只存储键值对信息,B 树 data 数据也需要存储,而每一页的存储空间是有限的(默认 16 kb),那么如果 data 数据较大时,每个节点能存储的 key 就很少,进而导致树的深度较大,增大了查询时的磁盘 IO 次数(每一层都进行一次 IO).
  2. B+ 树的叶子节点保存全集数据,是一个链表结构,而非叶子节点只存储 key,大大增加了非叶子节点存储 key 的数量,降低了树高.

1.4、聚簇索引和非聚簇索引

1.4.1、innoDB 中的主键索引

**聚簇索引:**由 主键索引 和 辅助索引 构成.

主键索引:主键索引中,叶子节点保存表中每一行的所有数据,当需要查找例如 where Id = 14,就会去主键索引 B+ 树上找到的叶子节点,然后获取行数据.

Ps:如果没有定义主键,就会选择唯一且非空的索引代替,如果非空索引也没有,就会自己隐式定义一个主键作为聚簇索引

辅助索引(innoDB 中的非聚簇索引就是辅助索引):就是在聚簇索引之上建立的索引,一般来说就是表中给其他字段建立的索引(非主键索引),也就是 复合索引、单列索引、唯一索引,并且的叶子节点存储的不再是行物理地址,而是主键值,因此辅助索引最少需要二次查询才能找到数据,例如 where name='cyk',步骤如下

  1. 在辅助索引 B+ 树种检索 name,然后到达叶子节点获取对应的主键.
  2. 根据主键在聚簇索引 B+ 树种在及进行一次检索操作,最终到达叶子节点获取整行数据.

非聚簇索引:在 myisam 使用的是非聚簇索引,也由两颗 B+ 树构成(主键索引、辅助索引),主键索引B+树节点存储了主键,辅助索引 B+ 树种存储了辅助键. 叶子节点都是用一个地址指向真正的表的数据,因此辅助键无需像 innoDB 一样访问主键索引树.

1.4.2、使用聚簇索引的优势

问题:每次使用辅助索引检索都需要经过两次 B+ 树查询,看上去聚簇索引的效率明显低于非聚簇索引,这不是多此一举么,聚簇索引优势在哪?

  1. 访问同一数据也不同记录时,会把页加载到缓存中,再次访问的时候,会在内存中完成访问,不必访问磁盘,而主键和数据又是一起被载入内存的,因此按照主键 id 来组织数据(排好序的),获取更快.
  2. innoDB 中的辅助索引叶子节点存储主键值,而不是物理地址,因此当行数据发生改变时(对表进行增删改),叶子节点也无需像 myisam 非聚簇索引的辅助索引一样改变地址,只需要维护索引树即可.
  3. innoDB 中的辅助索引叶子节点存放的是主键值,而 myisam 中存储的是物理地址,因此空间占用更小.

1.4.3、使用聚簇索引需要注意什么

主键最好不要使用 uuid,因为 uuid 值过于离散,不适合排序,并且有可能生成的 uuid 插入在索引树的中间位置,导致树调整复杂度变大,查询时消耗更多的时间.

建议使用 int 或者 bigint 类型的自增,方便排序并且默认会在索引树的末尾增加主键值,对索引树的结构影响最小.

1.4.4、为什么主键通常建议使用自增 id

聚簇索引的数据物理地址存放顺序和索引主键 id 顺序时一致的,因此索引是相邻的,对应的数据也是在相邻的磁盘上. 如果主键不是自增 id,那么会不断调整数据的物理地址,来进行分页. 如果是自增,就只要一页一页写,磁盘碎片也就少了.

1.5、索引失效的场景

  1. 查询语句中使用 like 关键字,如果匹配字符串的第一个字符为 "%",索引不会被使用;如果 "%" 不是在第一个位置,索引就会被使用.

  2. 查询语句中使用复合索引,需要满足匹配原则才可以(上面讲到过了)。

  3. 查询语句中使用 or 关键字时,如果 or 前后的两个条件都是索引,那么就会使用索引,如果任意一个不是索引,那么查询中不使用索引.

相关推荐
夏小花花31 分钟前
postgresql 创建序列
数据库·postgresql
Allen Bright31 分钟前
Redis介绍
数据库·redis·缓存
engchina39 分钟前
Oracle ADB 导入 BANK_GRAPH 的学习数据
数据库·学习·oracle·graph
不爱学习的YY酱40 分钟前
【计网不挂科】计算机网络第二章< 物理层 >习题库(含答案)
java·数据库·计算机网络
CCSBRIDGE1 小时前
sql文件
数据库·oracle
柯南二号1 小时前
HarmonyOS ArkTS 下拉列表组件
前端·javascript·数据库·harmonyos·arkts
液态不合群1 小时前
Mysql篇-三大日志
数据库·mysql
喝醉酒的小白2 小时前
数据库参数备份
数据库
小徍2 小时前
MySQL 8.0特性-自增变量的持久化
数据库·mysql
糖豆大将军2 小时前
Mysql个人八股总结
数据库·oracle