深度学习与深度迁移学习有什么区别?

深度学习包含深度迁移学习,它们都利用了深层神经网络(Deep Neural Network,DNN)来处理数据,并从中学习特征。但是,它们也有一些区别。

  • 深度学习是一种机器学习方法,它通过多层神经网络来自动学习特征,并从数据中预测结果。它通常用于解决图像分类、语音识别和自然语言处理等问题。深度学习需要大量的数据来训练模型,并且需要高性能的计算机来进行计算。
  • 深度迁移学习属于深度学习,它利用了深度学习的思想,通过在已经训练好的模型上进行微调,来解决新的问题。深度迁移学习可以利用已经训练好的模型,以减少训练所需的数据量和时间,并且可以在较低的计算成本下实现较高的准确率。因此,深度迁移学习可以用来解决数据不足或时间有限的问题。
    总的来说,深度学习和深度迁移学习都是利用深层神经网络来处理数据,但是深度学习需要大量的数据和高性能的计算机,而深度迁移学习则通过在已经训练好的模型上进行微调,来解决新的问题,具有更高的效率和更低的计算成本。
相关推荐
秋邱4 分钟前
价值升维!公益赋能 + 绿色技术 + 终身学习,构建可持续教育 AI 生态
网络·数据库·人工智能·redis·python·学习·docker
Mintopia7 分钟前
🎭 小众语言 AIGC:当 Web 端的低资源语言遇上“穷得只剩文化”的生成挑战
人工智能·aigc·全栈
安达发公司8 分钟前
安达发|告别手工排产!车间排产软件成为中央厨房的“最强大脑”
大数据·人工智能·aps高级排程·aps排程软件·安达发aps·车间排产软件
公众号-架构师汤师爷9 分钟前
n8n工作流实战:从0到1打造公众号热点选题一键采集智能体(万字图文)
人工智能·agent·智能体·n8n
CoovallyAIHub22 分钟前
抛弃LLM!MIT用纯视觉方法破解ARC难题,性能接近人类水平
深度学习·算法·计算机视觉
Baihai_IDP31 分钟前
剖析大模型产生幻觉的三大根源
人工智能·面试·llm
高洁0139 分钟前
具身智能-视觉语言导航(VLN)
深度学习·算法·aigc·transformer·知识图谱
DatGuy1 小时前
Week 26: 深度学习补遗:LSTM 原理与代码复现
人工智能·深度学习·lstm
杜子不疼.1 小时前
光影交织:基于Rokid AI眼镜的沉浸式影视剧情互动体验开发实战
人工智能
IT_陈寒1 小时前
Python高手都在用的5个隐藏技巧,让你的代码效率提升50%
前端·人工智能·后端