第6章 异步爬虫

目录

  • [1. 协程的基本原理](#1. 协程的基本原理)
    • [1.1 案例引入](#1.1 案例引入)
    • [1.2 基础知识](#1.2 基础知识)
    • [1.3 协程的用法](#1.3 协程的用法)
    • [1.4 定义协程](#1.4 定义协程)
    • [1.5 绑定回调](#1.5 绑定回调)
    • [1.6 多任务协程](#1.6 多任务协程)
    • [1.7 协程实现](#1.7 协程实现)
    • [1.8 使用aiohttp](#1.8 使用aiohttp)
  • [2. aiohttp的使用](#2. aiohttp的使用)
    • [2.1 基本介绍](#2.1 基本介绍)
    • [2.2 基本实例](#2.2 基本实例)
    • [2.3 URL参数设置](#2.3 URL参数设置)
    • [2.4 其他请求类型](#2.4 其他请求类型)
    • [2.5 POST请求](#2.5 POST请求)
    • [2.6 响应](#2.6 响应)
    • [2.7 超时设置](#2.7 超时设置)
    • [2.8 并发限制](#2.8 并发限制)
  • [3. aiohttp异步爬取实战](#3. aiohttp异步爬取实战)

1. 协程的基本原理

1.1 案例引入

python 复制代码
import logging
import time
import requests

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s %(levelname)s: %(message)s')

URL = "https://www.httpbin.org/delay/5"
TOTAL_NUMBER = 10


start_time = time.time()

for _ in range(1, TOTAL_NUMBER):
    logging.info(f"scraping {URL}")
    response = requests.get(URL)

end_time = time.time()
logging.info(f"total time {end_time - start_time}")

1.2 基础知识

阻塞

  • 阻塞状态:程序未得到所需计算资源时被挂起的状态
  • 程序在操作上是阻塞的:程序在等待某个操作完成期间,自身无法继续干别的事情

非阻塞

  • 程序在操作上非是阻塞的:程序在等待某操作的过程中,自身不被阻塞,可以继续干别的事情
  • 仅当程序封装的级别可以囊括独立的子程序单元时,程序才可能存在非阻塞状态
  • 因阻塞的存在而存在

同步

  • 程序单元同步执行:不同程序单元为了共同完成某个任务,在执行过程中需要靠某种通信方式保持协调一致

异步

  • 为了完成某种任务,有时不同程序单元之间无需通信协调也能完成任务

多进程

  • 利用CPU的多核优势,在同i一时间并行执行多个任务,可以大大提高执行效率

协程

  • 一种运行在用户态的轻量级线程
  • 拥有自己的寄存器上下文和栈
  • 调度切换
    • 将寄存器上下文和栈保存到其他地方,等切回来时,再恢复先前保存的寄存器上下文和栈
  • 能保留上一次调用时的状态,所有局部状态的一个特定组合,每次过程重入,就相当于进入上一次调用的状态
  • 本质上是个单线程
  • 实现异步操作

1.3 协程的用法

  • asyncio库
    • event_loop:
      • 事件循环
      • 把函数注册到这个事件循环上,当满足发生条件时,就调用对应的处理方法
    • coroutine:
      • 协程
      • 代指协程对象类型
      • 可以将协程对象注册到时间循环中,它会被事件循环调用
    • task:
      • 任务
      • 对协程对象的进一步封装
        • 包含协程对象的各个状态
    • future:
      • 将来执行或者没有执行的任务的结果
      • 和task没有本质区别
    • async关键字:
      • 定义一个方法(协程)
        • 这个方法在调用时不会立即被执行,而是会返回一个协程对象
    • await关键字:
      • 挂起阻塞方法的执行

1.4 定义协程

python 复制代码
import asyncio


async def execute(x):
    print(f"Number: {x}")

coroutine = execute(1)
print(f"Coroutine: {coroutine}")
print("After calling execute")

loop = asyncio.get_event_loop()
loop.run_until_complete(coroutine)
print("After calling loop")
  • 把协程对象coroutine传递给run_until_complete方法的时候,实际上进行了一个操作
    • 将coroutine封装成task对象
  • 显示声明task
python 复制代码
import asyncio


async def execute(x):
    print(f"Number: {x}")

coroutine = execute(1)
print(f"Coroutine: {coroutine}")
print("After calling execute")

loop = asyncio.get_event_loop()
task = loop.create_task(coroutine)
print(f"Task: {task}")

loop.run_until_complete(task)
print(f"Task: {task}")
print("After calling loop")
  • 使用ensure_future定义task对象
python 复制代码
import asyncio


async def execute(x):
    print(f"Number: {x}")

coroutine = execute(1)
print(f"Coroutine: {coroutine}")
print("After calling execute")

task = asyncio.ensure_future(coroutine)
print(f"Task: {task}")

loop = asyncio.get_event_loop()
loop.run_until_complete(task)
print(f"Task: {task}")
print("After calling loop")

1.5 绑定回调

  • 为task对象绑定一个回调方法
python 复制代码
import asyncio
import requests


async def request():
    url = "https://www.baidu.com/"
    status = requests.get(url)
    return status


def callback(task):
    print(f"Status: {task.result()}")


coroutine = request()
task = asyncio.ensure_future(coroutine)
task.add_done_callback(callback)
print(f"Task: {task}")

loop = asyncio.get_event_loop()
loop.run_until_complete(task)
print(f"Task: {task}")
  • 等效于
python 复制代码
import asyncio
import requests


async def request():
    url = "https://www.baidu.com/"
    status = requests.get(url)
    return status


coroutine = request()
task = asyncio.ensure_future(coroutine)
print(f"Task: {task}")

loop = asyncio.get_event_loop()
loop.run_until_complete(task)
print(f"Task: {task}")
print(f"Status: {task.result()}")

1.6 多任务协程

  • 定义一个task列表,然后使用wait方法执行
python 复制代码
import asyncio
import requests


async def request():
    url = "https://www.baidu.com/"
    status = requests.get(url)
    return status


tasks = [asyncio.ensure_future(request()) for _ in range(5)]
print(f"Tasks: {tasks}")

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

for task in tasks:
    print(f"Task result: {task.result()}")

1.7 协程实现

  • 单纯使用上述方法
python 复制代码
import asyncio
import time
import requests


async def request():
    url = "https://www.httpbin.org/delay/5"
    print(f"Waiting for {url}")
    response = requests.get(url)
    print(f"Response: {response} from {url}")

start = time.time()

tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()
print(f"Cost time: {end - start}")
  • 没有任何变化
  • 要实现异步处理,需要先执行挂起操作
    • 将耗时等待的操作挂起,让出控制权
python 复制代码
import asyncio
import time
import requests


async def request():
    url = "https://www.httpbin.org/delay/5"
    print(f"Waiting for {url}")
    response = await requests.get(url)
    print(f"Response: {response} from {url}")

start = time.time()

tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()
print(f"Cost time: {end - start}")
  • 报错
    • requests返回的Response对象不能和await一起使用
    • await后面的对象必须是如下格式之一:
      • 一个原生协程对象
      • 一个由types.coroutine修饰的生成器
        • 这个生成器可以返回协程对象
      • 由一个包含__ await __方法的对象返回的一个迭代器
  • 将请求页面的方法独立出来
python 复制代码
import asyncio
import time
import requests


async def get(url):
    return requests.get(url)


async def request():
    url = "https://www.httpbin.org/delay/5"
    print(f"Waiting for {url}")
    response = await get(url)
    print(f"Response: {response} from {url}")

start = time.time()

tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()
print(f"Cost time: {end - start}")
  • 依然没有任何变化

1.8 使用aiohttp

安装

python 复制代码
pip3 install aiohttp

使用

python 复制代码
import asyncio
import time
import aiohttp


async def get(url):
    session = aiohttp.ClientSession()
    response = await session.get(url)
    await response.text()
    await session.close()
    return response


async def request():
    url = "https://www.httpbin.org/delay/5"
    print(f"Waiting for {url}")
    response = await get(url)
    print(f"Response: {response} from {url}")

start = time.time()

tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()
print(f"Cost time: {end - start}")

2. aiohttp的使用

2.1 基本介绍

  • asyncio:实现对TCP、UDP、SSL协议的异步操作
  • aiohttp:实现对HTTP请求的异步操作
  • aiohttp是基于asyncio的异步HTTP网络模块
    • 既提供了服务端,又提供了客户端
      • 服务端
        • 可以搭建一个支持异步处理的服务器
          • 用于处理请求并返回响应
        • 类似于Django、Flask、Tornado等一些Web服务器
      • 客户端
        • 发起请求
        • 类似于使用request发起一个HTTP请求然后获得响应
          • request发起的是同步网络请求
          • aiohttp发起的是异步网络请求

2.2 基本实例

python 复制代码
import aiohttp
import asyncio


async def fetch(session, url):
    # 上下文管理器,自动分配和释放资源
    async with session.get(url) as response:
        return await response.json(), response.status


async def main():
    # 上下文管理器,自动分配和释放资源
    async with aiohttp.ClientSession() as session:
        url = "https://www.httpbin.org/delay/5"
        html, status = await fetch(session, url)
        print(f"html: {html}")
        print(f"status: {status}")

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
    # 较高版本的python可以不显示声明事件循环
    asyncio.run(main())

2.3 URL参数设置

python 复制代码
import aiohttp
import asyncio


async def main():
    params = {"name": "abc", "age": 10}
    async with aiohttp.ClientSession() as session:
        async with session.get("https://www.httpbin.org/get", params=params) as response:
            print(await response.text())

if __name__ == "__main__":
    asyncio.run(main())

2.4 其他请求类型

python 复制代码
session.post("https://www.httpbin.org/post", data=b"data")
session.put("https://www.httpbin.org/put", data=b"data")
session.delete("https://www.httpbin.org/delete")
session.head("https://www.httpbin.org/get")
session.options("https://www.httpbin.org/get")
session.patch("https://www.httpbin.org/patch", data=b"data")

2.5 POST请求

表单提交

python 复制代码
import aiohttp
import asyncio


async def main():
    data = {"name": "abc", "age": 10}
    async with aiohttp.ClientSession() as session:
        async with session.post("https://www.httpbin.org/post", data=data) as response:
            print(await response.text())

if __name__ == "__main__":
    asyncio.run(main())

JSON数据提交

python 复制代码
import aiohttp
import asyncio


async def main():
    data = {"name": "abc", "age": 10}
    async with aiohttp.ClientSession() as session:
        async with session.post("https://www.httpbin.org/post", json=data) as response:
            print(await response.text())

if __name__ == "__main__":
    asyncio.run(main())

2.6 响应

python 复制代码
import aiohttp
import asyncio


async def main():
    data = {"name": "abc", "age": 10}
    async with aiohttp.ClientSession() as session:
        async with session.post("https://www.httpbin.org/post", data=data) as response:
            print(f"status: {response.status}")
            print(f"headers: {response.headers}")
            print(f"body: {await response.text()}")
            print(f"bytes: {await response.read()}")
            print(f"json: {await response.json()}")


if __name__ == "__main__":
    asyncio.run(main())

2.7 超时设置

  • 使用ClientTimeout对象设置超时
python 复制代码
import aiohttp
import asyncio


async def main():
    # 设置2秒的超时时间
    timeout = aiohttp.ClientTimeout(total=2)
    async with aiohttp.ClientSession(timeout=timeout) as session:
        async with session.get("https://www.httpbin.org/get") as response:
            print(f"status: {response.status}")


if __name__ == "__main__":
    asyncio.run(main())

2.8 并发限制

  • 使用Semeaphore来控制并发量
    • 防止网站在短时间内无法响应
    • 避免将目标网站爬挂掉的风险
python 复制代码
import aiohttp
import asyncio

# 爬取的最大并发量
CONCURRENCY = 5
URL = "https://www.baidu.com/"

# 创建一个信号量对象
semaphore = asyncio.Semaphore(CONCURRENCY)
session = None


async def scrape_api():
    # 信号量可以控制进入爬取的最大协程数量
    async with semaphore:
        print(f"Scraping {URL}")
        async with session.get(URL) as response:
            await asyncio.sleep(1)
            return await response.text()


async def main():
    global session
    session = aiohttp.ClientSession()
    scrape_index_tasks = [
        asyncio.ensure_future(
            scrape_api()) for _ in range(1000)]
    await asyncio.gather(*scrape_index_tasks)


if __name__ == "__main__":
    asyncio.run(main())

3. aiohttp异步爬取实战

3.1 案例介绍

  • 目标网站:Scrape | Book
    • 网站数据由JavaScript渲染获得
    • 数据可以通过Ajax接口获取
    • 接口没有设置任何反爬措施和加密参数
  • 目标:
    • 使用aiohttp爬取全站的数据
    • 将数据通过异步的方式保存到 MongoDB 中

3.2 准备工作

  • MongoDB数据库

3.3 页面分析

3.4 实现思路

  • 爬取的两个阶段:
    • 异步爬取所有列表页
      • 将所有列表页的爬取任务集合在一起,并将其声明为由task组成的列表,进行异步爬取
    • 拿到上一步列表页的所有内容并解析
      • 将所有图书的id信息组合为所有详情页的爬取任务集合,并将其声明为task组成的列表,进行异步爬取,同时爬取结果也以异步方式存储到MongoDB中

3.5 基本配置

python 复制代码
import logging


logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s %(levelname)s: %(message)s')


INDEX_URL = "https://spa5.scrape.center/api/book/?limit=18&offset={offset}"
DETAIL_URL = "https://spa5.scrape.center/detail/{id}"
PAGE_SIZE = 18
PAGE_NUMBER = 100
CONCURRENCY = 5

3.6 爬取列表页

实现

通用的爬取方法
python 复制代码
import asyncio
import aiohttp


async def scrape_api(url):
    async with semaphore:
        try:
            logging.info(f"Scraping: {url}")
            # verify_ssl: 是否开启SSL认证
            async with session.get(url, verify_ssl=False) as response:
                return await response.json()
        except aiohttp.ClientError:
            logging.info(f"Error: {url}", exc_info=True)
爬取列表页
python 复制代码
async def scrape_index(page):
    url = INDEX_URL.format(offset=PAGE_SIZE * (page - 1))
    return await scrape_api(url)
串联并用
python 复制代码
import json


async def main():
    global session
    session = aiohttp.ClientSession()
    scrape_index_tasks = [
        asyncio.ensure_future(
            scrape_index(page)) for page in range(
            1, PAGE_NUMBER + 1)]
    results = await asyncio.gather(*scrape_index_tasks)
    logging.info(
        f"Results: {json.dumps(results, ensure_ascii=False, indent=2)}")

if __name__ == "__main__":
    asyncio.run(main())

合并

python 复制代码
import json
import asyncio
import logging
import aiohttp

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s %(levelname)s: %(message)s')


INDEX_URL = "https://spa5.scrape.center/api/book/?limit=18&offset={offset}"
DETAIL_URL = "https://spa5.scrape.center/detail/{id}"
PAGE_SIZE = 18
PAGE_NUMBER = 100
CONCURRENCY = 5

semaphore = asyncio.Semaphore(CONCURRENCY)
session = None


async def scrape_api(url):
    async with semaphore:
        try:
            logging.info(f"Scraping: {url}")
            async with session.get(url, verify_ssl=False) as response:
                return await response.json()
        except aiohttp.ClientError:
            logging.info(f"Error: {url}", exc_info=True)


async def scrape_index(page):
    url = INDEX_URL.format(offset=PAGE_SIZE * (page - 1))
    return await scrape_api(url)


async def main():
    global session
    session = aiohttp.ClientSession()
    scrape_index_tasks = [
        asyncio.ensure_future(
            scrape_index(page)) for page in range(
            1, PAGE_NUMBER + 1)]
    results = await asyncio.gather(*scrape_index_tasks)
    logging.info(
        f"Results: {json.dumps(results, ensure_ascii=False, indent=2)}")


if __name__ == "__main__":
    asyncio.run(main())

3.7 爬取详情页

实现

在main方法中将详情页的ID获取出来
python 复制代码
ids = []
for index_data in results:
    if not index_data:
        continue
    for item in index_data.get("results"):
        ids.append(item.get("id"))
爬取详情页
python 复制代码
async def scrape_detail(id):
    url = DETAIL_URL.format(id=id)
    data = await scrape_api(url)
    logging.info(f"Saving: {data}")
main方法增加对scrape_detail方法的调用
python 复制代码
scrape_detail_tasks = [
        asyncio.ensure_future(
            scrape_detail(id)) for id in ids]
    await asyncio.wait(scrape_detail_tasks)
    await session.close()

合并

python 复制代码
import json
import asyncio
import logging
import aiohttp

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s %(levelname)s: %(message)s')


INDEX_URL = "https://spa5.scrape.center/api/book/?limit=18&offset={offset}"
DETAIL_URL = "https://spa5.scrape.center/api/book/{id}"
PAGE_SIZE = 18
PAGE_NUMBER = 100
CONCURRENCY = 5

semaphore = asyncio.Semaphore(CONCURRENCY)
session = None


async def scrape_api(url):
    async with semaphore:
        try:
            logging.info(f"Scraping: {url}")
            async with session.get(url, verify_ssl=False) as response:
                return await response.json()
        except aiohttp.ClientError:
            logging.info(f"Error: {url}", exc_info=True)


async def scrape_index(page):
    url = INDEX_URL.format(offset=PAGE_SIZE * (page - 1))
    return await scrape_api(url)


async def scrape_detail(id):
    url = DETAIL_URL.format(id=id)
    data = await scrape_api(url)
    logging.info(f"Saving {url}: {data}")


async def main():
    global session
    session = aiohttp.ClientSession()
    scrape_index_tasks = [
        asyncio.ensure_future(
            scrape_index(page)) for page in range(
            1, PAGE_NUMBER + 1)]
    results = await asyncio.gather(*scrape_index_tasks)
    logging.info(
        f"Results: {json.dumps(results, ensure_ascii=False, indent=2)}")

    ids = []
    for index_data in results:
        if not index_data:
            continue
        for item in index_data.get("results"):
            ids.append(item.get("id"))

    scrape_detail_tasks = [
        asyncio.ensure_future(
            scrape_detail(id)) for id in ids]
    await asyncio.wait(scrape_detail_tasks)
    await session.close()


if __name__ == "__main__":
    asyncio.run(main())
相关推荐
零意@3 分钟前
ubuntu切换不同版本的python
windows·python·ubuntu
思忖小下14 分钟前
Python基础学习_01
python
q567315231 小时前
在 Bash 中获取 Python 模块变量列
开发语言·python·bash
是萝卜干呀1 小时前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据
代码欢乐豆1 小时前
数据采集之selenium模拟登录
python·selenium·测试工具
狂奔solar1 小时前
yelp数据集上识别潜在的热门商家
开发语言·python
Tassel_YUE1 小时前
网络自动化04:python实现ACL匹配信息(主机与主机信息)
网络·python·自动化
聪明的墨菲特i2 小时前
Python爬虫学习
爬虫·python·学习
努力的家伙是不讨厌的2 小时前
解析json导出csv或者直接入库
开发语言·python·json
云空3 小时前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite