4、stable diffusion

github

安装anaconda环境

python 复制代码
conda env create -f environment.yaml
conda activate ldm

安装依赖

python 复制代码
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install transformers==4.19.2 diffusers invisible-watermark
pip install -e .

安装xformers加速
xformers安装包

找到符合自己python,pytorch和cuda版本的xformers安装包

python 复制代码
wget https://anaconda.org/xformers/xformers/0.0.16/download/linux-64/xformers-0.0.16-py39_cu11.3_pyt1.12.1.tar.bz2
conda install xformers-0.0.16-py310_cu11.3_pyt1.12.1.tar.bz2
python -m xformers.info

安装成功为下述图片

源码

下载预训练模型权重

文生图
SD2.1-v

Image Inpainting with Stable Diffusion
512-inpainting-ema.ckpt

从Hugging Face下载encoding

当我们运行scripts/txt2img.py时,会发现还需要从hugging face下载encoding,但是国内无法下载,这时候我们会科学上网,同时安装下述依赖,这样就可以下载了

python 复制代码
os.environ["http_proxy"] = "http://ip:7890"
os.environ["https_proxy"] = "https://ip:7890"

pip install urllib3==1.25.11
pip install requests==2.27.1

文生图

python 复制代码
python scripts/txt2img.py 
--prompt
"a professional photograph of an astronaut riding a horse"
--ckpt
/devdata/chengan/stablediffusion/v2-1_768-ema-pruned.ckpt
--config
configs/stable-diffusion/v2-inference-v.yaml
--H
768
--W
768
--device 
cuda

注意: --device 默认为cpu,要换成 cuda,否则报错

python 复制代码
RuntimeError: expected scalar type BFloat16 but found Float


图生图

图生图使用到Gradio依赖,但是会缺少一个文件,使用下述命令补全

python 复制代码
wget https://cdn-media.huggingface.co/frpc-gradio-0.2/frpc_linux_amd64
mv frpc_linux_amd64 frpc_linux_amd64_v0.2
mv frpc_linux_amd64_v0.2 /home/chengan/anaconda3/envs/llm/lib/python3.9/site-packages/gradio 

chmod +x /home/chengan/anaconda3/envs/llm/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2

当部署项目到服务器,本地浏览器无法打开Gradio链接,修改inpainting.py文件最后一行

python 复制代码
block.launch(server_name="0.0.0.0", server_port=7896, share=True)
python 复制代码
python scripts/gradio/inpainting.py configs/stable-diffusion/v2-inpainting-inference.yaml /devdata/chengan/stablediffusion/512-inpainting-ema.ckpt


api

depth2image

python 复制代码
pip install -U git+https://github.com/huggingface/transformers.git
pip install diffusers transformers accelerate scipy safetensors
python 复制代码
import torch
import requests
from PIL import Image
from diffusers import StableDiffusionDepth2ImgPipeline

pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
   "stabilityai/stable-diffusion-2-depth",
   torch_dtype=torch.float16,
).to("cuda")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
init_image = Image.open(requests.get(url, stream=True).raw)

prompt = "two tigers"
n_propmt = "bad, deformed, ugly, bad anotomy"
image = pipe(prompt=prompt, image=init_image, negative_prompt=n_propmt, strength=0.7).images[0]

inpaint image

python 复制代码
  pipe = StableDiffusionInpaintPipeline.from_pretrained(
      "stabilityai/stable-diffusion-2-inpainting",
      torch_dtype=torch.float16,
  )
  pipe.to("cuda")
  prompt = "two tigers"
  # image and mask_image should be PIL images.
  # The mask structure is white for inpainting and black for keeping as is
  url = "http://images.cocodataset.org/val2017/000000039769.jpg"
  image = Image.open(requests.get(url, stream=True).raw)
  mask_image = np.ones(image.size)
  img = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]
  plt.imshow(img)
  plt.show()
相关推荐
LittleNyima8 小时前
【代码解读】阿里最新开源视频生成模型 Wan 2.1 实现解析
人工智能·stable diffusion·aigc·音视频
AIGC安琪13 小时前
AI绘画(Stable Diffusion)喂饭级教程
人工智能·ai作画·stable diffusion·aigc·美女
乱世刀疤14 小时前
AI绘画软件Stable Diffusion详解教程(2):Windows系统本地化部署操作方法(专业版)
ai作画·stable diffusion
Donvink21 小时前
【AIGC系列】3:Stable Diffusion模型介绍
人工智能·深度学习·语言模型·stable diffusion·aigc·transformer
PeterClerk3 天前
AIGC-Stable Diffusion模型介绍
图像处理·人工智能·python·自然语言处理·stable diffusion·aigc
农夫山泉2号5 天前
【个人开源】——从零开始在高通手机上部署sd(二)
stable diffusion·智能手机·sd·高通·qnn
后知后觉5 天前
windows 安装 stable diffusion
stable diffusion
农夫山泉2号5 天前
【个人开源】——从零开始在高通手机上部署sd(一)
stable diffusion·智能手机·sd·高通·qnn
AIGC安琪6 天前
【Stable Diffusion】SD迎来动画革命,AnimateDiff快速出图
人工智能·网络协议·tcp/ip·stable diffusion·aigc
Allen-Steven9 天前
《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》-配套代码示例
人工智能·pytorch·深度学习·stable diffusion·prompt·checkpoint