1143. Longest Common Subsequence 1035. Uncrossed Lines 53. Maximum Subarray

1143. Longest Common Subsequence

Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence , return 0.

A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

  • For example, "ace" is a subsequence of "abcde".

A common subsequence of two strings is a subsequence that is common to both strings.

There are two main cases to determine the recursive formula:

  1. text1[i - 1] is the same as text2[j - 1]

  2. text1[i - 1] is notthe same as text2[j - 1].

If text1[i - 1] and text2[j - 1] are the same, then a common element is found, so dp[i][j] = dp[i - 1][j - 1] + 1;

If text1[i - 1] and text2[j - 1] are not the same, then look at the longest common subsequence of text1[0, i - 2] and text2[0, j - 1] and the longest common subsequence of text1[0, i - 1] and text2[0, j - 2] and take the largest. i.e., dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

2-dimensional DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子序列的长度
        dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
        
        # 遍历 text1 和 text2,填充 dp 数组
        for i in range(1, len(text1) + 1):
            for j in range(1, len(text2) + 1):
                if text1[i - 1] == text2[j - 1]:
                    # 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    # 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        # 返回最长公共子序列的长度
        return dp[len(text1)][len(text2)]

1-dimensional DP:

Time complexity: O(m x n)

Space complexity: O(m)

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        dp = [0] * (n + 1)  # 初始化一维DP数组
        
        for i in range(1, m + 1):
            prev = 0  # 保存上一个位置的最长公共子序列长度
            for j in range(1, n + 1):
                curr = dp[j]  # 保存当前位置的最长公共子序列长度
                if text1[i - 1] == text2[j - 1]:
                    # 如果当前字符相等,则最长公共子序列长度加一
                    dp[j] = prev + 1
                else:
                    # 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值
                    dp[j] = max(dp[j], dp[j - 1])
                prev = curr  # 更新上一个位置的最长公共子序列长度
        
        return dp[n]  # 返回最后一个位置的最长公共子序列长度作为结果

1035. Uncrossed Lines

You are given two integer arrays nums1 and nums2. We write the integers of nums1 and nums2 (in the order they are given) on two separate horizontal lines.

We may draw connecting lines: a straight line connecting two numbers nums1[i] and nums2[j] such that:

  • nums1[i] == nums2[j], and
  • the line we draw does not intersect any other connecting (non-horizontal) line.

Note that a connecting line cannot intersect even at the endpoints (i.e., each number can only belong to one connecting line).

Return the maximum number of connecting lines we can draw in this way.

Its literaly like to get longest common subsequence from "adb" and "abd"

It's exactly the same as the last question.

python 复制代码
class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        m = len(nums1)
        n = len(nums2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]
       
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if nums1[i - 1] == nums2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1

                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        return dp[-1][-1]

53. Maximum Subarray

Given an integer array nums, find the subarray with the largest sum, and return its sum.

第二次还没ac 老了老了

dp:

python 复制代码
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp = [float('-inf')] * len(nums) # 不能 -inf
        dp[0] = nums[0]
        result = dp[0]  #初始化 ,必须要有 ,不能直接max(dp)

        for i in range(1, len(nums)):
            dp[i] = max(nums[i], dp[i - 1] + nums[i]) # 不是dp[i]是num[i] !!!!!!!!!!

            if dp[i] > result:
                result = dp[i]
        
        return result
相关推荐
喜欢喝果茶.1 分钟前
QOverload<参数列表>::of(&函数名)信号槽
开发语言·qt
亓才孓2 分钟前
[Class类的应用]反射的理解
开发语言·python
努力学编程呀(๑•ี_เ•ี๑)2 分钟前
【在 IntelliJ IDEA 中切换项目 JDK 版本】
java·开发语言·intellij-idea
码农小卡拉11 分钟前
深入解析Spring Boot文件加载顺序与加载方式
java·数据库·spring boot
向上的车轮19 分钟前
为什么.NET(C#)转 Java 开发时常常在“吐槽”Java:checked exception
java·c#·.net
Dragon Wu20 分钟前
Spring Security Oauth2.1 授权码模式实现前后端分离的方案
java·spring boot·后端·spring cloud·springboot·springcloud
island131423 分钟前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构任务的 Stream 调度机制
开发语言·人工智能·深度学习·神经网络
跳动的梦想家h26 分钟前
环境配置 + AI 提效双管齐下
java·vue.js·spring
坚持就完事了28 分钟前
Java中的集合
java·开发语言
魔芋红茶32 分钟前
Python 项目版本控制
开发语言·python