1143. Longest Common Subsequence 1035. Uncrossed Lines 53. Maximum Subarray

1143. Longest Common Subsequence

Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence , return 0.

A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

  • For example, "ace" is a subsequence of "abcde".

A common subsequence of two strings is a subsequence that is common to both strings.

There are two main cases to determine the recursive formula:

  1. text1[i - 1] is the same as text2[j - 1]

  2. text1[i - 1] is notthe same as text2[j - 1].

If text1[i - 1] and text2[j - 1] are the same, then a common element is found, so dp[i][j] = dp[i - 1][j - 1] + 1;

If text1[i - 1] and text2[j - 1] are not the same, then look at the longest common subsequence of text1[0, i - 2] and text2[0, j - 1] and the longest common subsequence of text1[0, i - 1] and text2[0, j - 2] and take the largest. i.e., dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

2-dimensional DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子序列的长度
        dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
        
        # 遍历 text1 和 text2,填充 dp 数组
        for i in range(1, len(text1) + 1):
            for j in range(1, len(text2) + 1):
                if text1[i - 1] == text2[j - 1]:
                    # 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    # 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        # 返回最长公共子序列的长度
        return dp[len(text1)][len(text2)]

1-dimensional DP:

Time complexity: O(m x n)

Space complexity: O(m)

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        dp = [0] * (n + 1)  # 初始化一维DP数组
        
        for i in range(1, m + 1):
            prev = 0  # 保存上一个位置的最长公共子序列长度
            for j in range(1, n + 1):
                curr = dp[j]  # 保存当前位置的最长公共子序列长度
                if text1[i - 1] == text2[j - 1]:
                    # 如果当前字符相等,则最长公共子序列长度加一
                    dp[j] = prev + 1
                else:
                    # 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值
                    dp[j] = max(dp[j], dp[j - 1])
                prev = curr  # 更新上一个位置的最长公共子序列长度
        
        return dp[n]  # 返回最后一个位置的最长公共子序列长度作为结果

1035. Uncrossed Lines

You are given two integer arrays nums1 and nums2. We write the integers of nums1 and nums2 (in the order they are given) on two separate horizontal lines.

We may draw connecting lines: a straight line connecting two numbers nums1[i] and nums2[j] such that:

  • nums1[i] == nums2[j], and
  • the line we draw does not intersect any other connecting (non-horizontal) line.

Note that a connecting line cannot intersect even at the endpoints (i.e., each number can only belong to one connecting line).

Return the maximum number of connecting lines we can draw in this way.

Its literaly like to get longest common subsequence from "adb" and "abd"

It's exactly the same as the last question.

python 复制代码
class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        m = len(nums1)
        n = len(nums2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]
       
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if nums1[i - 1] == nums2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1

                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        return dp[-1][-1]

53. Maximum Subarray

Given an integer array nums, find the subarray with the largest sum, and return its sum.

第二次还没ac 老了老了

dp:

python 复制代码
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp = [float('-inf')] * len(nums) # 不能 -inf
        dp[0] = nums[0]
        result = dp[0]  #初始化 ,必须要有 ,不能直接max(dp)

        for i in range(1, len(nums)):
            dp[i] = max(nums[i], dp[i - 1] + nums[i]) # 不是dp[i]是num[i] !!!!!!!!!!

            if dp[i] > result:
                result = dp[i]
        
        return result
相关推荐
机器视觉知识推荐、就业指导1 小时前
面试问题详解五:Qt 信号与槽的动态管理
开发语言·qt
vvilkim2 小时前
Java主流框架全解析:从企业级开发到云原生
java·运维·云原生
MZ_ZXD0013 小时前
springboot汽车租赁服务管理系统-计算机毕业设计源码58196
java·c++·spring boot·python·django·flask·php
A 计算机毕业设计-小途4 小时前
大四零基础用Vue+ElementUI一周做完化妆品推荐系统?
java·大数据·hadoop·python·spark·毕业设计·毕设
岁忧5 小时前
(nice!!!)(LeetCode 每日一题) 679. 24 点游戏 (深度优先搜索)
java·c++·leetcode·游戏·go·深度优先
四维碎片7 小时前
【Qt】线程池与全局信号实现异步协作
开发语言·qt·ui·visual studio
IT码农-爱吃辣条7 小时前
Three.js 初级教程大全
开发语言·javascript·three.js
☺����8 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
猿究院--王升8 小时前
jvm三色标记
java·jvm·算法
染翰8 小时前
lua入门以及在Redis中的应用
开发语言·redis·lua