1143. Longest Common Subsequence 1035. Uncrossed Lines 53. Maximum Subarray

1143. Longest Common Subsequence

Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence , return 0.

A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

  • For example, "ace" is a subsequence of "abcde".

A common subsequence of two strings is a subsequence that is common to both strings.

There are two main cases to determine the recursive formula:

  1. text1[i - 1] is the same as text2[j - 1]

  2. text1[i - 1] is notthe same as text2[j - 1].

If text1[i - 1] and text2[j - 1] are the same, then a common element is found, so dp[i][j] = dp[i - 1][j - 1] + 1;

If text1[i - 1] and text2[j - 1] are not the same, then look at the longest common subsequence of text1[0, i - 2] and text2[0, j - 1] and the longest common subsequence of text1[0, i - 1] and text2[0, j - 2] and take the largest. i.e., dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

2-dimensional DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子序列的长度
        dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
        
        # 遍历 text1 和 text2,填充 dp 数组
        for i in range(1, len(text1) + 1):
            for j in range(1, len(text2) + 1):
                if text1[i - 1] == text2[j - 1]:
                    # 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    # 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        # 返回最长公共子序列的长度
        return dp[len(text1)][len(text2)]

1-dimensional DP:

Time complexity: O(m x n)

Space complexity: O(m)

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        dp = [0] * (n + 1)  # 初始化一维DP数组
        
        for i in range(1, m + 1):
            prev = 0  # 保存上一个位置的最长公共子序列长度
            for j in range(1, n + 1):
                curr = dp[j]  # 保存当前位置的最长公共子序列长度
                if text1[i - 1] == text2[j - 1]:
                    # 如果当前字符相等,则最长公共子序列长度加一
                    dp[j] = prev + 1
                else:
                    # 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值
                    dp[j] = max(dp[j], dp[j - 1])
                prev = curr  # 更新上一个位置的最长公共子序列长度
        
        return dp[n]  # 返回最后一个位置的最长公共子序列长度作为结果

1035. Uncrossed Lines

You are given two integer arrays nums1 and nums2. We write the integers of nums1 and nums2 (in the order they are given) on two separate horizontal lines.

We may draw connecting lines: a straight line connecting two numbers nums1[i] and nums2[j] such that:

  • nums1[i] == nums2[j], and
  • the line we draw does not intersect any other connecting (non-horizontal) line.

Note that a connecting line cannot intersect even at the endpoints (i.e., each number can only belong to one connecting line).

Return the maximum number of connecting lines we can draw in this way.

Its literaly like to get longest common subsequence from "adb" and "abd"

It's exactly the same as the last question.

python 复制代码
class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        m = len(nums1)
        n = len(nums2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]
       
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if nums1[i - 1] == nums2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1

                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        return dp[-1][-1]

53. Maximum Subarray

Given an integer array nums, find the subarray with the largest sum, and return its sum.

第二次还没ac 老了老了

dp:

python 复制代码
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp = [float('-inf')] * len(nums) # 不能 -inf
        dp[0] = nums[0]
        result = dp[0]  #初始化 ,必须要有 ,不能直接max(dp)

        for i in range(1, len(nums)):
            dp[i] = max(nums[i], dp[i - 1] + nums[i]) # 不是dp[i]是num[i] !!!!!!!!!!

            if dp[i] > result:
                result = dp[i]
        
        return result
相关推荐
@。12416 小时前
对于灰度发布(金丝雀发布)的了解
开发语言·前端
wxweven16 小时前
校招面试官揭秘:我们到底在寻找什么样的技术人才?
java·面试·校招
陈陈爱java17 小时前
新知识点背诵
java
失散1317 小时前
分布式专题——39 RocketMQ客户端编程模型
java·分布式·架构·rocketmq
泽020217 小时前
Linux之环境变量
java·linux·redis
hsjkdhs17 小时前
C++之多层继承、多源继承、菱形继承
开发语言·c++·算法
Full Stack Developme17 小时前
Python Redis 教程
开发语言·redis·python
程序媛徐师姐17 小时前
Java基于SpringBoot的茶叶商城系统,附源码+文档说明
java·spring boot·java springboot·茶叶商城系统·java茶叶商城系统·茶叶·java茶叶商城
爱读源码的大都督18 小时前
为什么有了HTTP,还需要gPRC?
java·后端·架构
qq_49244844618 小时前
Jmeter设置负载阶梯式压测场景(详解教程)
开发语言·python·jmeter