kafka入门(三):kafka多线程消费

kafka消费积压

如果生产者发送消息的速度过快,或者是消费者处理消息的速度太慢,那么就会有越来越多的消息无法及时消费,也就是消费积压。

消费积压时,可以使用多线程消费,提高消费速度。

kafka多线程消费的代码:

复制代码
public class ThirdMultiConsumerThreadDemo {
    public static final String BROKER_LIST = "localhost:9092";
    public static final String TOPIC = "myTopic1";
    public static final String GROUP_ID = "group.demo";


    public static void main(String[] args) {
        Properties props = initConfig();
        KafkaConsumerThread consumerThread = new KafkaConsumerThread(props, TOPIC,
                Runtime.getRuntime().availableProcessors());
        consumerThread.start();
    }


    /***
     * kafka配置
     * @return
     */
    public static Properties initConfig() {
        Properties props = new Properties();
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
                StringDeserializer.class.getName());
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
                StringDeserializer.class.getName());
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, BROKER_LIST);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, GROUP_ID);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
        return props;
    }


    /**
     * kafka消费者线程
     */
    public static class KafkaConsumerThread extends Thread {
        private KafkaConsumer<String, String> kafkaConsumer;
        private ExecutorService executorService;
        private int threadNumber;

        public KafkaConsumerThread(Properties props, String topic, int threadNumber) {
            kafkaConsumer = new KafkaConsumer<>(props);
            kafkaConsumer.subscribe(Collections.singletonList(topic));
            this.threadNumber = threadNumber;
            executorService = new ThreadPoolExecutor(threadNumber, threadNumber,
                    0L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(1000),
                    new ThreadPoolExecutor.CallerRunsPolicy());
        }

        @Override
        public void run() {
            try {
                while (true) {
                    ConsumerRecords<String, String> records =
                            kafkaConsumer.poll(Duration.ofMillis(100));
                    if (!records.isEmpty()) {
                        executorService.submit(new RecordsHandler(records));
                    }
                }
            } catch (Exception e) {
                log.error("run error", e);
            } finally {
                kafkaConsumer.close();
            }
        }

    }

    /**
     * 处理消息
     */
    public static class RecordsHandler extends Thread {
        public final ConsumerRecords<String, String> records;

        public RecordsHandler(ConsumerRecords<String, String> records) {
            this.records = records;
        }

        @Override
        public void run() {
            //处理records.
            for (ConsumerRecord<String, String> record : records) {
                System.out.println("==========>record:"+record.value() + ",thread:" + Thread.currentThread().getName());
            }
        }
    }

}

发送消息后,使用多线程消息,运行结果如下:

复制代码
==========>record:{"id":"1234","name":"lin"},thread:pool-1-thread-1
==========>record:{"id":"5678","name":"chen"},thread:pool-1-thread-2
==========>record:{"id":"91011","name":"wu"},thread:pool-1-thread-3

参考资料:

《深入理解Kafka:核心设计与实践原理》

相关推荐
亲爱的非洲野猪3 小时前
Kafka “假死“现象深度解析与解决方案
分布式·kafka
CodeWithMe3 小时前
【Note】《Kafka: The Definitive Guide》第三章: Kafka 生产者深入解析:如何高效写入 Kafka 消息队列
分布式·kafka
虾条_花吹雪4 小时前
2、Connecting to Kafka
分布式·ai·kafka
亲爱的非洲野猪7 小时前
Kafka消息积压全面解决方案:从应急处理到系统优化
分布式·kafka
prince0519 小时前
Kafka 生产者和消费者高级用法
分布式·kafka·linq
菜萝卜子20 小时前
【Project】基于kafka的高可用分布式日志监控与告警系统
分布式·kafka
csdn_aspnet21 小时前
在 Windows 上安装和运行 Apache Kafka
windows·kafka
真实的菜2 天前
Kafka生态整合深度解析:构建现代化数据架构的核心枢纽
架构·kafka·linq
茫茫人海一粒沙3 天前
理解 Confluent Schema Registry:Kafka 生态中的结构化数据守护者
分布式·kafka
dessler3 天前
Kafka-消费者(Consumer)和消费者组(Consumer Group)
linux·运维·kafka